当前位置: 首页 > news >正文

pytorch线性回归模型预测房价例子

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 1. 创建线性回归模型类
class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(1, 1)  # 1个输入特征,1个输出def forward(self, x):return self.linear(x)# 2. 生成训练数据
area = np.array([1000, 1500, 1800, 2400, 3000], dtype=np.float32).reshape(-1, 1)  # 房屋面积(平方英尺)
price = np.array([250000, 300000, 350000, 500000, 600000], dtype=np.float32).reshape(-1, 1)  # 房价# 标准化房屋面积
area = area / 3000  # 假设最大面积为3000平方英尺# 转换为 PyTorch 张量
x_train = torch.from_numpy(area)
y_train = torch.from_numpy(price)# 3. 实例化模型、定义损失函数和优化器
model = LinearRegressionModel()
criterion = nn.MSELoss()  # 均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.001)  # 学习率调低# 4. 训练模型
epochs = 1000
for epoch in range(epochs):# 前向传播outputs = model(x_train)loss = criterion(outputs, y_train)# 反向传播optimizer.zero_grad()  # 清零梯度loss.backward()  # 计算梯度optimizer.step()  # 更新权重# 每100次输出一次损失值if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')# 5. 保存训练好的模型
torch.save(model.state_dict(), 'linear_regression_model.pth')
print("模型已保存!")# 6. 加载模型并进行预测
loaded_model = LinearRegressionModel()
loaded_model.load_state_dict(torch.load('linear_regression_model.pth'))
loaded_model.eval()  # 设置为评估模式# 进行预测
new_area = torch.tensor([[2500 / 3000]], dtype=torch.float32)  # 假设新房屋面积为2500平方英尺,标准化处理
predicted_price = loaded_model(new_area)
print(f"Predicted price for area 2500 sq.ft: ${predicted_price.item():,.2f}")
  • 创建模型LinearRegressionModel 是一个简单的线性回归模型,只有一个线性层 (nn.Linear)。
  • 数据准备:我们生成了一个简单的示例数据集,包含房屋面积和房价数据。数据被转换为 PyTorch 张量格式。
  • 模型训练:使用均方误差损失函数 (MSELoss) 和随机梯度下降优化器 (SGD) 来训练模型。模型在1000个迭代中进行训练,并在每100次迭代后输出损失值。
  • 保存模型:训练完成后,使用 torch.save 保存模型的参数。
  • 加载模型并进行预测:使用 torch.load 加载模型参数,并将模型设置为评估模式 (eval)。然后,我们通过模型对一个新的房屋面积值进行预测。

相关文章:

pytorch线性回归模型预测房价例子

import torch import torch.nn as nn import torch.optim as optim import numpy as np# 1. 创建线性回归模型类 class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).__init__()self.linear nn.Linear(1, 1) # 1个输入特征&…...

练习题 - DRF 3.x Caching 缓存使用示例和配置方法

在构建现代化的 Web 应用程序时,性能优化是一个非常重要的环节。尤其是在使用 Django Rest Framework (DRF) 开发 API 服务时,合理地利用缓存技术可以显著提高应用的响应速度和减轻数据库的负担。DRF 提供了多种缓存机制,包括基于内存、文件系统、数据库以及第三方缓存服务(…...

如何解压7z文件?8种方法(Win/Mac/手机/网页端)

7z 文件是一种高效的压缩文件格式,由 7 - Zip 软件开发者所采用。它运用独特的压缩算法,能显著缩小文件体积,便于存储与传输各类数据,像软件安装包、大型资料集等。但要使用其中内容,就必须解压,因为处于压…...

python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果

【1】引言 前序学习进程中,学习了图像互相叠加的不同操作方法,包括add()函数直接叠加BGR值和使用bitwise()函数对BGR值进行按位计算叠加等,相关文章链接包括且不限于: python学opencv|读取图像(四十二)使…...

window中80端口被占用问题

1,查看报错信息 可以看到在启动项目的时候,8081端口被占用了,导致项目无法启动。 2,查看被占用端口的pid #语法 netstat -aon|findstr :被占用端口#示例 netstat -aon|findstr :8080 3,杀死进程 #语法 taikkill /pid…...

06-机器学习-数据预处理

数据清洗 数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例: 一、数据清洗的核心任务 问题类型表现示例影响缺失值数值…...

电梯系统的UML文档12

5.2.1 DoorControl 的状态图 图 19: DoorControl 的状态图 5.2.2 DriveControl 的状态图 图 20: DriveControl 的状态图 5.2.3 LanternControl 的状态图 图 21: LanternControl 的状态图 5.2.4 HallButtonControl 的状态图 图 22: HallButtonControl 的状态图 5.2.5 CarB…...

萌新学 Python 之运算符

Python 中运算符包括:算术运算符、比较运算符、逻辑运算符、赋值运算符、位运算符、海象运算符 算术运算符:加 减 - 乘 * 除 / 取整 // 求余 % 求幂 ** 注意:取整时,一正一负整除,向下取整 比如 5 // …...

嵌入式知识点总结 Linux驱动 (五)-linux内核

针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.内核镜像格式有几种?分别有什么区别? 2.内核中申请内存有哪几个函数?有什么区别? 3.什么是内核空间,用户空间&…...

zabbix7 配置字体 解决中文乱码问题(随手记)

目录 问题网传的方法(无效)正确的修改方式步骤 问题 zabbix 最新数据 中,图标的中文显示不出。 网传的方法(无效) 网传有一个方法:上传字体文件到/usr/share/zabbix/assets/fonts;修改/usr/…...

预测不规则离散运动的下一个结构

有一个点在19*19的平面上运动,运动轨迹为 一共移动了90步,顺序为 y x y x y x 0 17 16 30 10 8 60 15 15 1 3 6 31 10 7 61 14 15 2 12 17 32 9 9 62 16 15 3 4 12 33 10 9 63 18 15 4 3 18 34 15 12 6…...

CTFSHOW-WEB入门-命令执行29-32

题目:web 29 题目:解题思路:分析代码: error_reporting(0); if(isset($_GET[c])){//get一个c的参数$c $_GET[c];//赋值给Cif(!preg_match("/flag/i", $c)){eval($c);//if C变量里面没有flag,那么就执行C…...

SQL Server 建立每日自动log备份的维护计划

SQLServer数据库可以使用维护计划完成数据库的自动备份,下面以在SQL Server 2012为例说明具体配置方法。 1.启动SQL Server Management Studio,在【对象资源管理器】窗格中选择数据库实例,然后依次选择【管理】→【维护计划】选项&#xff0…...

doris:HLL

HLL是用作模糊去重,在数据量大的情况性能优于 Count Distinct。HLL的导入需要结合hll_hash等函数来使用。更多文档参考HLL。 使用示例​ 第 1 步:准备数据​ 创建如下的 csv 文件:test_hll.csv 1001|koga 1002|nijg 1003|lojn 1004|lofn …...

双层Git管理项目,github托管显示正常

双层Git管理项目,github托管显示正常 背景 在写React项目时,使用Next.js,该项目默认由git托管。但是我有在项目代码外层记笔记的习惯,我就在外层使用了git托管。 目录如下 code 层内也有.git 文件,对其托管。 我没太在意&…...

准备知识——旋转机械的频率和振动基础

旋转频率,也称为转速或旋转速率(符号ν,小写希腊字母nu,也作n),是物体绕轴旋转的频率。其国际单位制单位是秒的倒数(s −1 );其他常见测量单位包括赫兹(Hz)、每秒周期数(cps) 和每分钟转数(rpm)…...

知识库管理驱动企业知识流动与工作协同创新模式

内容概要 知识库管理在现代企业中扮演着至关重要的角色,其价值不仅体现在知识的积累,还在于通过优质的信息流动促进协作与创新。有效的知识库能够将分散的信息整合为有序、易于访问的资源,为员工提供实时支持,进而提升整体工作效…...

CMake常用命令指南(CMakeList.txt)

CMakeList从入门到精通的文章有很多不再赘述( 此处附带一篇优秀的博文链接:一个简单例子,完全入门CMake语法与CMakeList编写 )。 本文主要列举 CMake 中常用命令的详细说明、优缺点分析以及推荐做法,以更好地理解和灵…...

【回溯+剪枝】找出所有子集的异或总和再求和 全排列Ⅱ

文章目录 1863. 找出所有子集的异或总和再求和解题思路:子集问题解法(回溯 剪枝)47. 全排列 II解题思路:排序 回溯 剪枝 1863. 找出所有子集的异或总和再求和 1863. 找出所有子集的异或总和再求和 一个数组的 异或总和 定义为…...

中国技术突破对国际格局的多维影响与回应

链接地址: https://download.csdn.net/download/wanggang130532/90323798https://download.csdn.net/download/wanggang130532/90323798...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

什么是EULA和DPA

文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...