当前位置: 首页 > news >正文

Spring AI 在微服务中的应用:支持分布式 AI 推理

1. 引言

在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理,是企业面临的关键挑战。

本篇文章将探讨:

  • 微服务架构中如何部署 Spring AI 服务;
  • 如何通过分布式 AI 推理提高推理性能与扩展性;
  • 典型应用场景,如电商推荐、智能客服、实时分析等。

2. Spring AI 在微服务架构中的集成方式

在微服务架构下,Spring AI 可以作为一个独立的 AI 推理服务,供其他微服务调用,或者嵌入到多个微服务中,实现分布式推理。

2.1 典型架构

在这里插入图片描述

在此架构中:

  • Spring AI 独立部署:一个单独的微服务,负责处理 AI 任务;
  • 微服务调用 AI 服务:各业务微服务(如用户管理、订单处理)通过 REST APIgRPC 调用 AI 推理服务;
  • 多个 AI 模型支持:AI 推理服务可以根据业务需求选择不同的 AI 模型(如 OpenAI、Hugging Face、TensorFlow 等)。

3. 实现 Spring AI 推理微服务

3.1 创建 Spring Boot AI 推理服务

首先,创建一个 Spring Boot 项目,并添加 Spring AI 依赖

Maven 依赖
<dependencies><!-- Spring Boot Web 依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- Spring AI 依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-ai-openai</artifactId></dependency><!-- gRPC 支持(可选) --><dependency><groupId>io.grpc</groupId><artifactId>grpc-spring-boot-starter</artifactId><version>2.12.0.RELEASE</version></dependency>
</dependencies>

3.2 统一 AI 推理接口

为了支持多个 AI 模型,我们定义一个AI 任务接口,让不同的 AI 任务实现这个接口。

public interface AiTaskService {String process(String input);
}

3.3 Spring AI 处理 AI 任务

OpenAI GPT 为例,我们创建一个 AI 任务的实现:

import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.stereotype.Service;@Service
public class OpenAiTaskService implements AiTaskService {private final OpenAiChatClient chatClient;public OpenAiTaskService(OpenAiChatClient chatClient) {this.chatClient = chatClient;}@Overridepublic String process(String input) {return chatClient.call(input);}
}

3.4 AI 推理 API

提供一个 RESTful API 供其他微服务调用:

import org.springframework.web.bind.annotation.*;@RestController
@RequestMapping("/ai")
public class AiController {private final AiTaskService aiTaskService;public AiController(AiTaskService aiTaskService) {this.aiTaskService = aiTaskService;}@PostMapping("/process")public String processRequest(@RequestBody String input) {return aiTaskService.process(input);}
}

4. 分布式 AI 推理

在实际业务中,AI 推理通常会有较大的计算需求,因此可以采用以下方案分布式部署 AI 推理服务

4.1 负载均衡与 API Gateway

多个 Spring AI 微服务实例可以通过 API Gateway(如 Nginx 或 Spring Cloud Gateway) 进行负载均衡,提高可用性。

示例:Nginx 负载均衡

upstream ai-service {server ai-service-1:8080;server ai-service-2:8080;
}server {location /ai/ {proxy_pass http://ai-service;}
}

4.2 gRPC 高效调用

相比 REST APIgRPC 具有更高的性能和低延迟,适用于大规模 AI 任务。

gRPC 服务端

import io.grpc.stub.StreamObserver;
import net.devh.boot.grpc.server.service.GrpcService;@GrpcService
public class AiGrpcService extends AiTaskServiceGrpc.AiTaskServiceImplBase {@Overridepublic void process(AiRequest request, StreamObserver<AiResponse> responseObserver) {String result = aiTaskService.process(request.getInput());responseObserver.onNext(AiResponse.newBuilder().setOutput(result).build());responseObserver.onCompleted();}
}

gRPC 客户端

@GrpcClient("aiService")
private AiTaskServiceGrpc.AiTaskServiceBlockingStub aiBlockingStub;public String callAiModel(String input) {AiRequest request = AiRequest.newBuilder().setInput(input).build();return aiBlockingStub.process(request).getOutput();
}

5. 应用场景

5.1 智能客服系统

  • 业务需求
    • 客户咨询时,AI 需要提供实时回答。
  • 架构设计
    • 智能客服微服务调用 Spring AI 提供的 NLP 服务,实现智能问答。

5.2 电商推荐系统

  • 业务需求
    • 在用户浏览商品时,实时推荐相关产品。
  • 架构设计
    • 用户行为微服务 采集用户数据;
    • Spring AI 微服务 调用推荐模型;
    • 推荐微服务 生成推荐结果。

5.3 金融风控系统

  • 业务需求
    • 实时检测交易风险,防止欺诈行为。
  • 架构设计
    • 交易微服务 监控交易;
    • Spring AI 风控模型 分析欺诈风险;
    • 风控微服务 采取预防措施(如冻结账户)。

6. 总结

在微服务架构中,Spring AI 提供了强大的 AI 推理能力,可以通过 REST API 或 gRPC 进行调用,并结合 分布式部署 提高系统可扩展性。无论是在 智能客服、电商推荐、金融风控 还是其他 AI 任务中,Spring AI 都能提供灵活、高效的 AI 计算能力,为微服务架构中的 AI 任务提供强大的支持。

未来发展方向

  • 多模型支持(如 OpenAI + Hugging Face)
  • 边缘计算 AI 推理
  • 自动扩容与动态调度 AI 计算资源

通过本文的介绍,相信你已经掌握了 Spring AI 在微服务架构中的应用方式,并可以在自己的项目中进行实践! 🚀

此外,今天是农历正月初一,祝各位精神股东春节快乐~!

相关文章:

Spring AI 在微服务中的应用:支持分布式 AI 推理

1. 引言 在现代企业中&#xff0c;微服务架构 已成为开发复杂系统的主流方式&#xff0c;而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI&#xff0c;使多个服务可以协同完成 AI 任务&#xff0c;并支持分布式 AI 推理&#x…...

5.3.2 软件设计原则

文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则&#xff1a;抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义&#xff0c;然后通过这些操作对数…...

java求职学习day20

1 在线考试系统 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 软件的需求分析 在线考试系统的主要功能分析如下&#xff1a; &#xff08; 1 &#xff09;学员系统 &#xff08;1.1&#xff09;用户模块&…...

Python NumPy(8):NumPy 位运算、NumPy 字符串函数

1 NumPy 位运算 位运算是一种在二进制数字的位级别上进行操作的一类运算&#xff0c;它们直接操作二进制数字的各个位&#xff0c;而不考虑数字的整体值。NumPy 提供了一系列位运算函数&#xff0c;允许对数组中的元素进行逐位操作&#xff0c;这些操作与 Python 的位运算符类似…...

日志2025.1.30

日志2025.1.30 1.简略地做了一下交互系统 public class Interactable : MonoBehaviour { private MeshRenderer renderer; private Material defaultMaterial; public Material highlightMaterial; private void Awake() { renderer GetComponentInChildren<Me…...

实战:如何快速让新网站被百度收录?

本文来自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/22.html 要让新网站快速被百度收录&#xff0c;可以采取以下实战策略&#xff1a; 一、网站基础优化 网站结构清晰&#xff1a;确保网站的结构简洁清晰&#xff0c;符合百度的抓取规则。主…...

PhotoShop中JSX编辑器安装

1.使用ExtendScript Tookit CC编辑 1.安装 打开CEP Resource链接&#xff1a; CEP-Resources/ExtendScript-Toolkit at master Adobe-CEP/CEP-Resources (github.com) 将文件clone到本地或者下载到本地 点击AdobeExtendScriptToolKit_4_Ls22.exe安装&#xff0c;根据弹出的…...

01-时间与管理

时间与效率 一丶番茄时钟步骤好处 二丶86400s的财富利用时间的方法每天坚持写下一天计划 自我管理体系计划-行动-评价-回顾 一丶番茄时钟 一个计时器 一份任务清单,任务 步骤 每一个25分钟是一个番茄时钟 将工作时间划分为若干个25分钟的工作单元期间只专注于当前任务,遇到…...

MiniMax-01技术报告解读

刚刚MiniMax发布了MiniMax-01&#xff0c;简单测试了效果&#xff0c;感觉不错。于是又把它的技术报告看了一下。这种报告看多了&#xff0c;就会多一个毛病&#xff0c;越来越觉得自己也能搞一个。 这篇文章我觉得最有意思的一句是对数据质量的强调“低质量数据在训练超过两个…...

多头潜在注意力(MLA):让大模型“轻装上阵”的技术革新——从DeepSeek看下一代语言模型的高效之路

多头潜在注意力&#xff08;MLA&#xff09;&#xff1a;让大模型“轻装上阵”的技术革新 ——从DeepSeek看下一代语言模型的高效之路 大模型的“内存焦虑” 当ChatGPT等大语言模型&#xff08;LLM&#xff09;惊艳世界时&#xff0c;很少有人意识到它们背后隐藏的“内存焦虑”…...

哈希表实现

目录 1. 哈希概念 1.1 直接定址法 1.2 哈希冲突 1.3 负载因子 1.4 将关键字转为整型 1.5 哈希函数 1.5.1 除法散列法/除留余数法 1.5.2 乘法散列法 1.5.3 全域散列法 1.5.4 其他方法 1.6 处理哈希冲突 1.6.1 开放定址法 1.6.1.1 线性探测 1.6.1.2 二次探测 1.6.…...

Linux的常用指令的用法

目录 Linux下基本指令 whoami ls指令&#xff1a; 文件&#xff1a; touch clear pwd cd mkdir rmdir指令 && rm 指令 man指令 cp mv cat more less head tail 管道和重定向 1. 重定向&#xff08;Redirection&#xff09; 2. 管道&#xff08;Pipes&a…...

Ubuntu安装VMware17

安装 下载本文的附件&#xff0c;之后执行 sudo chmod x VMware-Workstation-Full-17.5.2-23775571.x86_64.bundle sudo ./VMware-Workstation-Full-17.5.2-23775571.x86_64.bundle安装注意事项&#xff1a; 跳过账户登录的办法&#xff1a;断开网络 可能出现的问题以及解决…...

什么是线性化PDF?

线性化PDF是一种特殊的PDF文件组织方式。 总体而言&#xff0c;PDF是一种极为优雅且设计精良的格式。PDF由大量PDF对象构成&#xff0c;这些对象用于创建页面。相关信息存储在一棵二叉树中&#xff0c;该二叉树同时记录文件中每个对象的位置。因此&#xff0c;打开文件时只需加…...

每日一题——序列化二叉树

序列化二叉树 BM39 序列化二叉树题目描述序列化反序列化 示例示例1示例2 解题思路序列化过程反序列化过程 代码实现代码说明复杂度分析总结 BM39 序列化二叉树 题目描述 请实现两个函数&#xff0c;分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式…...

Transformer+vit原理分析

目录 一、Transformer的核心思想 1. 自注意力机制&#xff08;Self-Attention&#xff09; 2. 多头注意力&#xff08;Multi-Head Attention&#xff09; 二、Transformer的架构 1. 整体结构 2. 编码器层&#xff08;Encoder Layer&#xff09; 3. 解码器层&#xff08;Decoder…...

「AI学习笔记」深度学习的起源与发展:从神经网络到大数据(二)

深度学习&#xff08;DL&#xff09;是现代人工智能&#xff08;AI&#xff09;的核心之一&#xff0c;但它并不是一夜之间出现的技术。从最初的理论提出到如今的广泛应用&#xff0c;深度学习经历了几乎一个世纪的不断探索与发展。今天&#xff0c;我们一起回顾深度学习的历史…...

【漫话机器学习系列】069.哈达马乘积(Hadamard Product)

哈达马乘积&#xff08;Hadamard Product&#xff09; 哈达马乘积&#xff08;Hadamard Product&#xff09;是两个矩阵之间的一种元素级操作&#xff0c;也称为逐元素乘积&#xff08;Element-wise Product&#xff09;。它以矩阵的对应元素相乘为规则&#xff0c;生成一个新…...

2025一区新风口:小波变换+KAN!速占!

今天给大家分享一个能让审稿人眼前一亮&#xff0c;好发一区的idea&#xff1a;小波变换KAN&#xff01; 一方面&#xff1a;KAN刚中稿ICLR25&#xff0c;正是风口上&#xff0c;与小波变换的结合还处于起步阶段&#xff0c;正是红利期&#xff0c;创新空间广阔。 另一方面&a…...

相同的树及延伸题型(C语言详解版)

从LeetCode 100和101看二叉树的比较与对称性判断 今天要讲的是leetcode100.相同的树&#xff0c;并且本文章还会讲到延伸题型leetcode101.对称二叉树。本文章编写用的是C语言&#xff0c;大家主要是学习思路&#xff0c;学习过后可以自己点击链接测试&#xff0c;并且做一些对…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...