Spring AI 在微服务中的应用:支持分布式 AI 推理
1. 引言
在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理,是企业面临的关键挑战。
本篇文章将探讨:
- 在微服务架构中如何部署 Spring AI 服务;
- 如何通过分布式 AI 推理提高推理性能与扩展性;
- 典型应用场景,如电商推荐、智能客服、实时分析等。
2. Spring AI 在微服务架构中的集成方式
在微服务架构下,Spring AI 可以作为一个独立的 AI 推理服务,供其他微服务调用,或者嵌入到多个微服务中,实现分布式推理。
2.1 典型架构
在此架构中:
- Spring AI 独立部署:一个单独的微服务,负责处理 AI 任务;
- 微服务调用 AI 服务:各业务微服务(如用户管理、订单处理)通过 REST API 或 gRPC 调用 AI 推理服务;
- 多个 AI 模型支持:AI 推理服务可以根据业务需求选择不同的 AI 模型(如 OpenAI、Hugging Face、TensorFlow 等)。
3. 实现 Spring AI 推理微服务
3.1 创建 Spring Boot AI 推理服务
首先,创建一个 Spring Boot 项目,并添加 Spring AI 依赖:
Maven 依赖
<dependencies><!-- Spring Boot Web 依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- Spring AI 依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-ai-openai</artifactId></dependency><!-- gRPC 支持(可选) --><dependency><groupId>io.grpc</groupId><artifactId>grpc-spring-boot-starter</artifactId><version>2.12.0.RELEASE</version></dependency>
</dependencies>
3.2 统一 AI 推理接口
为了支持多个 AI 模型,我们定义一个AI 任务接口,让不同的 AI 任务实现这个接口。
public interface AiTaskService {String process(String input);
}
3.3 Spring AI 处理 AI 任务
以 OpenAI GPT 为例,我们创建一个 AI 任务的实现:
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.stereotype.Service;@Service
public class OpenAiTaskService implements AiTaskService {private final OpenAiChatClient chatClient;public OpenAiTaskService(OpenAiChatClient chatClient) {this.chatClient = chatClient;}@Overridepublic String process(String input) {return chatClient.call(input);}
}
3.4 AI 推理 API
提供一个 RESTful API 供其他微服务调用:
import org.springframework.web.bind.annotation.*;@RestController
@RequestMapping("/ai")
public class AiController {private final AiTaskService aiTaskService;public AiController(AiTaskService aiTaskService) {this.aiTaskService = aiTaskService;}@PostMapping("/process")public String processRequest(@RequestBody String input) {return aiTaskService.process(input);}
}
4. 分布式 AI 推理
在实际业务中,AI 推理通常会有较大的计算需求,因此可以采用以下方案分布式部署 AI 推理服务。
4.1 负载均衡与 API Gateway
多个 Spring AI 微服务实例可以通过 API Gateway(如 Nginx 或 Spring Cloud Gateway) 进行负载均衡,提高可用性。
示例:Nginx 负载均衡
upstream ai-service {server ai-service-1:8080;server ai-service-2:8080;
}server {location /ai/ {proxy_pass http://ai-service;}
}
4.2 gRPC 高效调用
相比 REST API,gRPC 具有更高的性能和低延迟,适用于大规模 AI 任务。
gRPC 服务端
import io.grpc.stub.StreamObserver;
import net.devh.boot.grpc.server.service.GrpcService;@GrpcService
public class AiGrpcService extends AiTaskServiceGrpc.AiTaskServiceImplBase {@Overridepublic void process(AiRequest request, StreamObserver<AiResponse> responseObserver) {String result = aiTaskService.process(request.getInput());responseObserver.onNext(AiResponse.newBuilder().setOutput(result).build());responseObserver.onCompleted();}
}
gRPC 客户端
@GrpcClient("aiService")
private AiTaskServiceGrpc.AiTaskServiceBlockingStub aiBlockingStub;public String callAiModel(String input) {AiRequest request = AiRequest.newBuilder().setInput(input).build();return aiBlockingStub.process(request).getOutput();
}
5. 应用场景
5.1 智能客服系统
- 业务需求:
- 客户咨询时,AI 需要提供实时回答。
- 架构设计:
- 智能客服微服务调用 Spring AI 提供的 NLP 服务,实现智能问答。
5.2 电商推荐系统
- 业务需求:
- 在用户浏览商品时,实时推荐相关产品。
- 架构设计:
- 用户行为微服务 采集用户数据;
- Spring AI 微服务 调用推荐模型;
- 推荐微服务 生成推荐结果。
5.3 金融风控系统
- 业务需求:
- 实时检测交易风险,防止欺诈行为。
- 架构设计:
- 交易微服务 监控交易;
- Spring AI 风控模型 分析欺诈风险;
- 风控微服务 采取预防措施(如冻结账户)。
6. 总结
在微服务架构中,Spring AI 提供了强大的 AI 推理能力,可以通过 REST API 或 gRPC 进行调用,并结合 分布式部署 提高系统可扩展性。无论是在 智能客服、电商推荐、金融风控 还是其他 AI 任务中,Spring AI 都能提供灵活、高效的 AI 计算能力,为微服务架构中的 AI 任务提供强大的支持。
未来发展方向:
- 多模型支持(如 OpenAI + Hugging Face)
- 边缘计算 AI 推理
- 自动扩容与动态调度 AI 计算资源
通过本文的介绍,相信你已经掌握了 Spring AI 在微服务架构中的应用方式,并可以在自己的项目中进行实践! 🚀
此外,今天是农历正月初一,祝各位精神股东春节快乐~!
相关文章:

Spring AI 在微服务中的应用:支持分布式 AI 推理
1. 引言 在现代企业中,微服务架构 已成为开发复杂系统的主流方式,而 AI 模型推理 也越来越多地被集成到业务流程中。如何在分布式微服务架构下高效地集成 Spring AI,使多个服务可以协同完成 AI 任务,并支持分布式 AI 推理&#x…...

5.3.2 软件设计原则
文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则:抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义,然后通过这些操作对数…...

java求职学习day20
1 在线考试系统 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 软件的需求分析 在线考试系统的主要功能分析如下: ( 1 )学员系统 (1.1)用户模块&…...

Python NumPy(8):NumPy 位运算、NumPy 字符串函数
1 NumPy 位运算 位运算是一种在二进制数字的位级别上进行操作的一类运算,它们直接操作二进制数字的各个位,而不考虑数字的整体值。NumPy 提供了一系列位运算函数,允许对数组中的元素进行逐位操作,这些操作与 Python 的位运算符类似…...

日志2025.1.30
日志2025.1.30 1.简略地做了一下交互系统 public class Interactable : MonoBehaviour { private MeshRenderer renderer; private Material defaultMaterial; public Material highlightMaterial; private void Awake() { renderer GetComponentInChildren<Me…...

实战:如何快速让新网站被百度收录?
本文来自:百万收录网 原文链接:https://www.baiwanshoulu.com/22.html 要让新网站快速被百度收录,可以采取以下实战策略: 一、网站基础优化 网站结构清晰:确保网站的结构简洁清晰,符合百度的抓取规则。主…...

PhotoShop中JSX编辑器安装
1.使用ExtendScript Tookit CC编辑 1.安装 打开CEP Resource链接: CEP-Resources/ExtendScript-Toolkit at master Adobe-CEP/CEP-Resources (github.com) 将文件clone到本地或者下载到本地 点击AdobeExtendScriptToolKit_4_Ls22.exe安装,根据弹出的…...

01-时间与管理
时间与效率 一丶番茄时钟步骤好处 二丶86400s的财富利用时间的方法每天坚持写下一天计划 自我管理体系计划-行动-评价-回顾 一丶番茄时钟 一个计时器 一份任务清单,任务 步骤 每一个25分钟是一个番茄时钟 将工作时间划分为若干个25分钟的工作单元期间只专注于当前任务,遇到…...

MiniMax-01技术报告解读
刚刚MiniMax发布了MiniMax-01,简单测试了效果,感觉不错。于是又把它的技术报告看了一下。这种报告看多了,就会多一个毛病,越来越觉得自己也能搞一个。 这篇文章我觉得最有意思的一句是对数据质量的强调“低质量数据在训练超过两个…...

多头潜在注意力(MLA):让大模型“轻装上阵”的技术革新——从DeepSeek看下一代语言模型的高效之路
多头潜在注意力(MLA):让大模型“轻装上阵”的技术革新 ——从DeepSeek看下一代语言模型的高效之路 大模型的“内存焦虑” 当ChatGPT等大语言模型(LLM)惊艳世界时,很少有人意识到它们背后隐藏的“内存焦虑”…...

哈希表实现
目录 1. 哈希概念 1.1 直接定址法 1.2 哈希冲突 1.3 负载因子 1.4 将关键字转为整型 1.5 哈希函数 1.5.1 除法散列法/除留余数法 1.5.2 乘法散列法 1.5.3 全域散列法 1.5.4 其他方法 1.6 处理哈希冲突 1.6.1 开放定址法 1.6.1.1 线性探测 1.6.1.2 二次探测 1.6.…...

Linux的常用指令的用法
目录 Linux下基本指令 whoami ls指令: 文件: touch clear pwd cd mkdir rmdir指令 && rm 指令 man指令 cp mv cat more less head tail 管道和重定向 1. 重定向(Redirection) 2. 管道(Pipes&a…...

Ubuntu安装VMware17
安装 下载本文的附件,之后执行 sudo chmod x VMware-Workstation-Full-17.5.2-23775571.x86_64.bundle sudo ./VMware-Workstation-Full-17.5.2-23775571.x86_64.bundle安装注意事项: 跳过账户登录的办法:断开网络 可能出现的问题以及解决…...

什么是线性化PDF?
线性化PDF是一种特殊的PDF文件组织方式。 总体而言,PDF是一种极为优雅且设计精良的格式。PDF由大量PDF对象构成,这些对象用于创建页面。相关信息存储在一棵二叉树中,该二叉树同时记录文件中每个对象的位置。因此,打开文件时只需加…...

每日一题——序列化二叉树
序列化二叉树 BM39 序列化二叉树题目描述序列化反序列化 示例示例1示例2 解题思路序列化过程反序列化过程 代码实现代码说明复杂度分析总结 BM39 序列化二叉树 题目描述 请实现两个函数,分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式…...

Transformer+vit原理分析
目录 一、Transformer的核心思想 1. 自注意力机制(Self-Attention) 2. 多头注意力(Multi-Head Attention) 二、Transformer的架构 1. 整体结构 2. 编码器层(Encoder Layer) 3. 解码器层(Decoder…...

「AI学习笔记」深度学习的起源与发展:从神经网络到大数据(二)
深度学习(DL)是现代人工智能(AI)的核心之一,但它并不是一夜之间出现的技术。从最初的理论提出到如今的广泛应用,深度学习经历了几乎一个世纪的不断探索与发展。今天,我们一起回顾深度学习的历史…...
【漫话机器学习系列】069.哈达马乘积(Hadamard Product)
哈达马乘积(Hadamard Product) 哈达马乘积(Hadamard Product)是两个矩阵之间的一种元素级操作,也称为逐元素乘积(Element-wise Product)。它以矩阵的对应元素相乘为规则,生成一个新…...

2025一区新风口:小波变换+KAN!速占!
今天给大家分享一个能让审稿人眼前一亮,好发一区的idea:小波变换KAN! 一方面:KAN刚中稿ICLR25,正是风口上,与小波变换的结合还处于起步阶段,正是红利期,创新空间广阔。 另一方面&a…...

相同的树及延伸题型(C语言详解版)
从LeetCode 100和101看二叉树的比较与对称性判断 今天要讲的是leetcode100.相同的树,并且本文章还会讲到延伸题型leetcode101.对称二叉树。本文章编写用的是C语言,大家主要是学习思路,学习过后可以自己点击链接测试,并且做一些对…...

【Redis】 String 类型的介绍和常用命令
1. 介绍 Redis 中的 key 都是字符串类型Redis 中存储字符串是完全按照二进制流的形式保存的,所以 Redis 是不处理字符集编码的问题,客户端传入的命令中使用的是什么编码就采用什么编码,使得 Redis 能够处理各种类型的数据,包括文…...

LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145356022 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与…...

Docker/K8S
文章目录 项目地址一、Docker1.1 创建一个Node服务image1.2 volume1.3 网络1.4 docker compose 二、K8S2.1 集群组成2.2 Pod1. 如何使用Pod(1) 运行一个pod(2) 运行多个pod 2.3 pod的生命周期2.4 pod中的容器1. 容器的生命周期2. 生命周期的回调3. 容器重启策略4. 自定义容器启…...

32、【OS】【Nuttx】OSTest分析(1):stdio测试(二)
背景 接上篇wiki 31、【OS】【Nuttx】OSTest分析(1):stdio测试(一) 继续stdio测试的分析,上篇讲到标准IO端口初始化,单从测试内容来说其实很简单,没啥可分析的,但这几篇…...

git push到远程仓库时无法推送大文件
一、错误 remote: Error: Deny by project hooks setting ‘default’: size of the file ‘scientific_calculator’, is 164 MiB, which has exceeded the limited size (100 MiB) in commit ‘4c91b7e3a04b8034892414d649860bf12416b614’. 二、原因 本地提交过大文件&am…...

Vue.js路由管理与自定义指令深度剖析
Vue.js 是一个强大的前端框架,提供了丰富的功能来帮助开发者构建复杂的单页应用(SPA)。本文将详细介绍 Vue.js 中的自定义指令和路由管理及导航守卫。通过这些功能,你可以更好地控制视图行为和应用导航,从而提升用户体验和开发效率。 1 自定义指令详解 1.1 什么是自定义…...

NVIDIA GPU介绍:概念、序列、核心、A100、H100
概述 入职一家大模型领域创业公司,恶补相关知识。 概念 一些概念: HPC:High Performance Computing,高性能计算SoC:System on Chip,单片系统FLOPS:Floating Point Operations Per Second&am…...

【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂
目录 1. 常见运算函数 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术&…...

C语言练习(31)
有5个学生,每个学生有3门课程的成绩,从键盘输入以上数据(包括学号、姓名、3门课程成绩),计算出平均成绩,将原有数据和计算出的平均分数存放在磁盘文件stud中。 设5名学生的学号、姓名和3门课程成绩如下&am…...

什么是长短期记忆网络?
一、概念 长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门)…...