当前位置: 首页 > news >正文

晴,初三,年已过

既然直播如此影响情绪,为什么还要直播?因为无聊?明明那么多事情可以打发时间。

真不想懂。

今日初三,昨天晚上小舅家聚,今天大舅家聚,计划明天小姨妈家聚。

今晚喝了点大舅哥哥泡的白葡萄酒,60度白酒泡的,暴口不甜。实话,白酒得很在针尖上,这么伤身体的活可不能白喝。

在我看来,尽管小姨妈家的表弟比较喜欢玩,什么都会,成家了还没有收心,重心还没有在自己的小家里。但是我真的很羡慕,至少有自己的小家吧,小安同学对表弟也很好,很懂事呐。

经济的确是家庭和睦的重要因素。但,不管如何,人在一起最重要,正如有钱没钱回家过年一样。有钱也好,没钱也罢,足够对家重视,才配有一个好家,这个家才会欣欣向荣,会进步。

没有谁是完美的,得到一些必将失去一些,恐百密一疏。

算了算了,大道理听的足够的多…

这次,如果不能和喜欢的人在一起,那么我愿意选择一个爱我的人在一起,随便拉一个得了。

睡了

相关文章:

晴,初三,年已过

既然直播如此影响情绪,为什么还要直播?因为无聊?明明那么多事情可以打发时间。 真不想懂。 今日初三,昨天晚上小舅家聚,今天大舅家聚,计划明天小姨妈家聚。 今晚喝了点大舅哥哥泡的白葡萄酒,…...

Vue3 v-bind 和 v-model 对比

1. 基本概念 1.1 v-bind 单向数据绑定从父组件向子组件传递数据简写形式为 : 1.2 v-model 双向数据绑定父子组件数据同步本质是 v-bind 和 v-on 的语法糖 2. 基础用法对比 2.1 表单元素绑定 <!-- v-bind 示例 --> <template><input :value"text&quo…...

Smalltalk语言是何物?面向对象鼻祖Simula的诞生?Simula和Smalltalk有什么区别?面向对象设计?

Smalltalk语言是何物? Smalltalk语言的前身可以追溯到Flex系统&#xff0c;这是由Alan Kay最早提出的。在随后的发展中&#xff0c;Smalltalk逐渐演化&#xff0c;并出现了Smalltalk-72和Smalltalk-76等版本。最终&#xff0c;在经过近10年的研究与发展后&#xff0c;Xerox研究…...

KVM/ARM——基于ARM虚拟化扩展的VMM

1. 前言 ARM架构为了支持虚拟化做了些扩展&#xff0c;称为虚拟化扩展(Virtualization Extensions)。原先为VT-x创建的KVM(Linux-based Kernel Virtual Machine)适配了ARM体系结构&#xff0c;引入了KVM/ARM (the Linux ARM hypervisor)。KVM/ARM没有在hypervisor中引入复杂的…...

Windows系统中Docker可视化工具对比分析,Docker Desktop,Portainer,Rancher

Docker可视化工具对比分析&#xff0c;Docker Desktop&#xff0c;Portainer&#xff0c;Rancher Windows系统中Docker可视化工具对比分析1. 工具概览2. Docker Desktop官网链接&#xff1a;主要优点&#xff1a;主要缺点&#xff1a;版本更新频率&#xff1a; 3. Portainer官网…...

【架构面试】二、消息队列和MySQL和Redis

MQ MQ消息中间件 问题引出与MQ作用 常见面试问题&#xff1a;面试官常针对项目中使用MQ技术的候选人提问&#xff0c;如如何确保消息不丢失&#xff0c;该问题可考察候选人技术能力。MQ应用场景及作用&#xff1a;以京东系统下单扣减京豆为例&#xff0c;MQ用于交易服和京豆服…...

算法【完全背包】

完全背包与01背包的区别仅在于每种商品可以选取无限次。时间复杂度O(物品数量 * 背包容量) 下面通过题目加深理解。 题目一 测试链接&#xff1a;疯狂的采药 - 洛谷 分析&#xff1a;这是一道完全背包的模板题。对于第i个物品的可能性展开也有两种&#xff0c;第一种是不取第…...

二叉树的遍历

有一个结点的二叉树。给出每个结点的两个子结点编号&#xff0c;建立一棵二叉树&#xff0c;如果是叶子结点&#xff0c;则输入 0 0。 建好树这棵二叉树之后&#xff0c;依次求出它的前序、中序、后序列遍历。 输入格式: 第一行一个整数n &#xff0c;表示结点数。 之后n 行…...

1.31 实现五个线程的同步

1.使用互斥锁实现 1>程序代码 #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <pthread.h> #include &l…...

three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)

春节忙完一轮&#xff0c;总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。 这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论&#xff0c;所以像相机矩阵推导这种网上已经很多优质文章的内容&#xff0c;笔者就一笔带过。 然而关于负缩放&#xf…...

【开源免费】基于SpringBoot+Vue.JS体育馆管理系统(JAVA毕业设计)

本文项目编号 T 165 &#xff0c;文末自助获取源码 \color{red}{T165&#xff0c;文末自助获取源码} T165&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

《大数据时代“快刀”:Flink实时数据处理框架优势全解析》

在数字化浪潮中&#xff0c;数据呈爆发式增长&#xff0c;实时数据处理的重要性愈发凸显。从金融交易的实时风险监控&#xff0c;到电商平台的用户行为分析&#xff0c;各行业都急需能快速处理海量数据的工具。Flink作为一款开源的分布式流处理框架&#xff0c;在这一领域崭露头…...

antdesignvue统计数据源条数、计算某列合计值、小数计算不精确多了很多小数位

1.在</a-table>下方加如下代码 <div>数据总条数&#xff1a;{ {tableData.length}}&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp <template>A列合计&#xff1a;{ {sum}}</template> </div> 注&#xff1a;tableData为<a-tabl…...

02.05、链表求和

02.05、[中等] 链表求和 1、题目描述 给定两个用链表表示的整数&#xff0c;每个节点包含一个数位。 这些数位是反向存放的&#xff0c;也就是个位排在链表首部。 编写函数对这两个整数求和&#xff0c;并用链表形式返回结果。 2、解题思路 本题要求对两个链表表示的整数…...

dmfldr实战

dmfldr实战 本文使用达梦的快速装载工具&#xff0c;对测试表进行数据导入导出。 新建测试表 create table “BENCHMARK”.“TEST_FLDR” ( “uid” INTEGER identity(1, 1) not null , “name” VARCHAR(24), “begin_date” TIMESTAMP(0), “amount” DECIMAL(6, 2), prim…...

Kafka 副本机制(包含AR、ISR、OSR、HW 和 LEO 介绍)

文章目录 Kafka 副本机制&#xff08;包含AR、ISR、OSR、HW 和 LEO 介绍&#xff09;1. 副本的基本概念2. 副本同步和一致性2.1 AR&#xff08;Assigned Replicas&#xff09;2.2 ISR&#xff08;In-Sync Replicas&#xff09;2.3 OSR&#xff08;Out-of-Sync Replicas&#xf…...

爬虫基础(二)Web网页的基本原理

一、网页的组成 网页由三部分构成&#xff1a;HTML、JavaScript、CSS。 &#xff08;1&#xff09;HTML HTML 相当于网页的骨架&#xff0c;它通过使用标签来定义网页内容的结构。 举个例子&#xff1a; 它把图片标签为img、把视频标签为video&#xff0c;然后组合到一个界面…...

外网访问禅道软件项目管理系统

禅道项目管理软件是一款国产的开源免费项目管理软件&#xff0c;专注于研发项目管理&#xff0c;旨在帮助企业或团队提高项目管理的效率和质量。 本文将详细的介绍如何在 Windows 系统电脑端下载运行禅道软件项目管理系统&#xff0c;并且结合路由侠内网穿透实现外网访问本地的…...

Python 梯度下降法(五):Adam Optimize

文章目录 Python 梯度下降法&#xff08;五&#xff09;&#xff1a;Adam Optimize一、数学原理1.1 介绍1.2 符号说明1.3 实现流程 二、代码实现2.1 函数代码2.2 总代码2.3 遇到的问题2.4 算法优化 三、优缺点3.1 优点3.2 缺点 四、相关链接 Python 梯度下降法&#xff08;五&a…...

笔试-二进制

应用题 将符合区间[l,r]内的十进制整数转换为二进制表示&#xff0c;请问不包含“101”的整数个数是多少&#xff1f; 实现 l int(input("请输入下限l&#xff0c;其值大于等于1&#xff1a;")) r int(input("请输入上限r&#xff0c;其值大于等于l&#x…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...