当前位置: 首页 > news >正文

理解神经网络:Brain.js 背后的核心思想

温馨提示

这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以:

  1. 先收藏,等后面文章遇到不懂的地方再回来查阅。
  2. 直接跳读,重点关注加粗或高亮的部分。

放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊

欢迎来到 brain.js 的学习之旅!

无论你是零基础的新手,还是已经有一定编程经验的开发者,这个系列都将为你提供一个系统、全面的学习路径。我们将从最基础的概念开始,逐步深入到实际应用和高级技巧,最终让你能够自信地构建和训练自己的神经网络模型。

以下是我们的学习路线图:

brainJS-roadmap

这一系列文章从入门到进阶,涵盖了 brain.js 的核心功能、技术细节以及实际应用场景。不仅适合初学者学习和实践,也为有一定基础的开发者提供了更多扩展和深入的思考方向。接下来,我们进入系列的第一部分:基础篇。

Snipaste_2025-01-24_12-01-41

一、什么是神经网络?

1.1 神经网络的定义

神经网络(Neural Network),全称人工神经网络(Artificial Neural NetworkANN),是一种受生物神经系统启发的计算模型。它通过模拟人脑神经元的连接和工作方式,完成数据的处理和预测任务。

  • 直观理解:神经网络就像一个会学习的系统。它通过处理输入数据,生成与之对应的输出。例如,输入一张手写数字图片,神经网络会将其分类为 0 到 9 中的某一个数字。
  • 核心功能:神经网络擅长模式识别和预测。无论是语音识别、图像分类,还是文本生成,它都展现了强大的适应性和学习能力。
1.2 为什么神经网络如此强大?

传统的算法需要人为设计规则,而神经网络通过训练可以自动学习规则。这使它能够适应各种数据模式和任务场景。总结来说,神经网络是一个“通用函数近似器”,可以从数据中学习规律,并利用这些规律进行推理和预测。

1.3 举例说明:神经网络如何工作?

假设你有一组手写数字图片,神经网络的任务是识别这些数字。它的工作过程如下:

  1. 接收输入数据:将每张图片转化为像素矩阵,例如一个 28x28 的灰度图片会被展平为一个 784 维的向量。
  2. 特征提取:通过隐藏层逐步提取图片中的边缘、形状等关键信息。
  3. 生成输出:根据提取的特征,将图片分类为相应的数字(0 到 9)。

神经网络的强大之处在于它的“学习能力”。它能够从海量数据中提取特征并构建复杂的映射关系。它的核心结构类似于人脑,由大量的“神经元”组成,并通过“权重”连接,形成一个可以自我优化的网络。

二、神经网络的灵感来自大脑

2.1 人脑与人工神经网络的对比

神经网络的概念来源于对人脑结构和工作方式的模拟。人脑是由大约 860亿个神经元数百万亿个突触 组成的复杂网络。它通过这些神经元的连接和协作,完成思维、学习和决策等复杂任务。

人工神经网络(Artificial Neural NetworkANN)通过数学建模,抽象出人脑的部分功能。尽管人工神经网络远不及人脑复杂,但它能够在特定任务中表现得非常出色。

以下是人脑和人工神经网络的一些对比:

特性人脑人工神经网络
基本单元神经元(Neuron人工神经元(Node
信息传递方式电化学信号通过突触传播数值信号通过权重传播
学习能力通过强化学习调整突触连接强度通过训练调整权重和偏置
灵活性高度灵活,能处理多任务通常针对特定任务设计,灵活性较低
能耗高效低耗能能耗高,尤其在大规模训练时
2.2 生物神经元的工作原理

生物神经元由以下三个主要部分组成:

  1. 树突(Dendrite:接收其他神经元传来的信号。
  2. 细胞体(Soma:对接收到的信号进行整合和处理,并决定是否激活神经元。
  3. 轴突(Axon:如果神经元被激活,轴突将信号传递给下一个神经元。

信号传播过程

  • 树突接收到多个信号,并传递到细胞体。
  • 如果信号强度超过某个阈值,神经元会“激活”,产生动作电位
  • 动作电位通过轴突传播到突触,影响下一个神经元。
2.3 生物神经元的工作原理

人工神经元是对生物神经元的数学抽象模型,它通过以下方式工作:

  1. 接收输入信号(Input:每个输入信号代表一个特征值,例如房价预测中的面积或房间数。

  2. 加权求和(Weighted Sum:输入信号会根据重要性赋予不同的权重(Weight)。权重值越大,表示信号对最终结果的影响越大。

    输入信号会根据重要性赋予不同的权重(Weight)。权重值越大,表示信号对最终结果的影响越大。
    z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1nwixi+b
    其中:

    • xi:第 i 个输入信号
    • wi:对应的权重
    • b:偏置(Bias),用于调整计算结果
  3. 激活函数(Activation Function:加权求和结果会通过一个激活函数,决定神经元是否激活,以及激活后的输出值。

  4. 输出信号(Output:激活函数的结果被传递到下一层神经元,直到输出层。

2.4 从生物神经元到人工神经元的转化
生物神经元部分对应的人工神经元组件功能
树突(Dendrite输入信号接收外界输入数据,传递到神经元中处理
细胞体(Soma加权求和和激活函数处理输入信号,并根据阈值决定是否激活
轴突(Axon输出信号将激活后的信号传递给下一层的神经元

人工神经元的设计灵感虽然来源于生物神经元,但它的目标是高效计算和任务专用化,而不是完全复制生物神经元的复杂性。通过输入信号、权重、偏置和激活函数的协作,人工神经元能够处理复杂的数据模式并生成输出。

三、人工神经网络的基础结构

人工神经网络由多个神经元按照层级结构排列而成,通常包括以下三个部分:输入层隐藏层输出层。每一层都有特定的功能,它们协同工作以实现数据处理和任务预测。

NNS


3.1 输入层(Input Layer

作用:输入层是神经网络的起点,用于接收外部数据,并将这些数据传递给网络的下一层。

  • 每个输入节点对应一个特征值。例如,在房价预测中,特征可能包括面积、房间数、地理位置等。
  • 输入层本身不对数据进行任何处理,只是将数据作为信号传递到隐藏层。

假设我们有以下数据用于预测房价:

  • 面积:120 平方米
  • 房间数:3
  • 距市中心距离:5 公里

这些数据会作为输入信号传递到网络中。


3.2 隐藏层(Hidden Layer

作用:隐藏层是神经网络的核心计算部分,用于提取数据特征并执行复杂的数学运算。

  • 隐藏层节点会接收来自上一层的输入信号,经过权重计算和激活函数处理后,将结果传递给下一层。
  • 隐藏层的数量和每层节点数可以根据问题的复杂性调整。

隐藏层的计算过程

  1. 对输入信号进行加权求和:
    z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1nwixi+b

    • wi:输入信号的权重
    • xi:输入信号
    • b:偏置,用于调整计算结果
  2. 应用激活函数:
    a = f ( z ) a = f(z) a=f(z)

    • f:激活函数,用于引入非线性,使网络能够学习复杂的模式。

在房价预测中,隐藏层中的一个节点可能专注于“面积”和“房间数”之间的关系,而另一个节点可能关注“距离市中心”和“房价”的关系。通过多层隐藏层的计算,神经网络能够提取到输入数据中的深层次特征。


3.3 输出层(Output Layer

作用:输出层是神经网络的终点,用于生成最终结果。

  • 输出的形式取决于任务类型:
    • 分类任务:输出层通常包含多个节点,每个节点表示一个类别的概率。
    • 回归任务:输出层通常只有一个节点,表示连续值的预测结果。

在手写数字识别中,输出层有 10 个节点,表示数字 0-9 的概率。例如:输出层结果:[0.1, 0.05, 0.8, 0.05, ...],这里第 3 个节点的值为 0.8,表示神经网络预测输入图片是数字“2”。

在房价预测中,输出层可能直接输出房价,例如 200 万元


3.4 激活函数(Activation Function

作用:激活函数是每个节点的“开关”,决定神经元是否被激活,以及如何传递信号到下一层。

  • 如果没有激活函数,神经网络只能处理简单的线性关系,无法应对复杂的非线性问题。
  • 数学意义:激活函数引入非线性,使神经网络具备学习复杂映射关系的能力。

常见激活函数

  1. Sigmoid
    f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
    将输出限制在 (0, 1) 范围内,适合二分类任务。

  2. ReLURectified Linear Unit
    f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
    简单高效,广泛用于隐藏层节点。

  3. Tanh(双曲正切函数)
    f ( x ) = e x − e − x e x + e − x

相关文章:

理解神经网络:Brain.js 背后的核心思想

温馨提示 这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以: 先收藏,等后面文章遇到不懂的地方再回来查阅。直接跳读,重点关注加粗或高亮的部分。放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊 欢迎来到 brain.js 的学习之旅!…...

【Docker】dockerfile识别当前构建的镜像平台

在编写dockerfile的时候,可能会遇到需要针对不同平台进行不同操作的时候,这需要我们对dockerfile进行针对性修改。 比如opencv的依赖项libjasper-dev在ubuntu18.04上就需要根据不同的平台做不同的处理,关于这个库的安装在另外一篇博客里面有…...

【VM】VirtualBox安装CentOS8虚拟机

阅读本文前,请先根据 VirtualBox软件安装教程 安装VirtualBox虚拟机软件。 1. 下载centos8系统iso镜像 可以去两个地方下载,推荐跟随本文的操作用阿里云的镜像 centos官网:https://www.centos.org/download/阿里云镜像:http://…...

【C++篇】哈希表

目录 一,哈希概念 1.1,直接定址法 1.2,哈希冲突 1.3,负载因子 二,哈希函数 2.1,除法散列法 /除留余数法 2.2,乘法散列法 2.3,全域散列法 三,处理哈希冲突 3.1&…...

Java篇之继承

目录 一. 继承 1. 为什么需要继承 2. 继承的概念 3. 继承的语法 4. 访问父类成员 4.1 子类中访问父类的成员变量 4.2 子类中访问父类的成员方法 5. super关键字 6. super和this关键字 7. 子类构造方法 8. 代码块的执行顺序 9. protected访问修饰限定符 10. 继承方式…...

边缘检测算法(candy)

人工智能例子汇总:AI常见的算法和例子-CSDN博客 Canny 边缘检测的步骤 1. 灰度转换 如果输入的是彩色图像,则需要先转换为 灰度图像,因为边缘检测通常在单通道图像上进行。 2. 高斯滤波(Gaussian Blur) 由于边缘…...

设计模式Python版 组合模式

文章目录 前言一、组合模式二、组合模式实现方式三、组合模式示例四、组合模式在Django中的应用 前言 GOF设计模式分三大类: 创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式…...

dfs枚举问题

碎碎念:要开始刷算法题备战蓝桥杯了,一切的开头一定是dfs 定义 枚举问题就是咱数学上学到的,从n个数里面选m个数,有三种题型(来自Acwing) 从 1∼n 这 n个整数中随机选取任意多个,输出所有可能的选择方案。 把 1∼n这…...

【开源免费】基于SpringBoot+Vue.JS社区智慧养老监护管理平台(JAVA毕业设计)

本文项目编号 T 163 ,文末自助获取源码 \color{red}{T163,文末自助获取源码} T163,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

安全防护前置

就业概述 网络安全工程师/安全运维工程师/安全工程师 安全架构师/安全专员/研究院(数学要好) 厂商工程师(售前/售后) 系统集成工程师(所有计算机知识都要会一点) 学习目标 前言 网络安全事件 蠕虫病毒--&…...

高性能消息队列Disruptor

定义一个事件模型 之后创建一个java类来使用这个数据模型。 /* <h1>事件模型工程类&#xff0c;用于生产事件消息</h1> */ no usages public class EventMessageFactory implements EventFactory<EventMessage> { Overridepublic EventMessage newInstance(…...

kamailio中的sctp模块

以下是关于 Kamailio 配置中 enable_sctpno 的详细解释&#xff1a; 1. 参数作用 enable_sctp&#xff1a; 该参数用于控制 Kamailio 是否启用 SCTP&#xff08;Stream Control Transmission Protocol&#xff09; 协议支持。 设置为 yes&#xff1a;启用 SCTP&#xff0c;并加…...

前端学习-事件解绑,mouseover和mouseenter的区别(二十九)

目录 前言 解绑事件 语法 鼠标经过事件的区别 鼠标经过事件 示例代码 两种注册事件的区别 总结 前言 人道洛阳花似锦&#xff0c;偏我来时不逢春 解绑事件 on事件方式&#xff0c;直接使用null覆盖就可以实现事件的解绑 语法 btn.onclick function(){alert(点击了…...

独立游戏RPG回顾:高成本

刚看了某纪录片&#xff0c; 内容是rpg项目的回顾。也是这个以钱为核心话题的系列的最后一集。 对这期特别有代入感&#xff0c;因为主角是曾经的同事&#xff0c;曾经在某天晚上听过其项目组的争论。 对其这些年的起伏特别的能体会。 主角是制作人&#xff0c;在访谈中透露这…...

10.4 LangChain核心架构揭秘:模块化设计如何重塑大模型应用开发?

LangChain核心架构揭秘:模块化设计如何重塑大模型应用开发? 关键词: LangChain模块化设计、大模型开发框架、LangChain核心概念、AI应用开发、LLM工程化 一、LangChain的模块化设计哲学:从“手工作坊”到“工业化生产” 传统开发痛点: 代码重复:每个项目从零开始编写胶…...

【学习笔记】深度学习网络-正则化方法

作者选择了由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 三位大佬撰写的《Deep Learning》(人工智能领域的经典教程&#xff0c;深度学习领域研究生必读教材),开始深度学习领域学习&#xff0c;深入全面的理解深度学习的理论知识。 在之前的文章中介绍了深度学习中用…...

网站快速收录:如何优化网站头部与底部信息?

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/46.html 为了加快网站的收录速度&#xff0c;优化网站头部与底部信息是关键一环。以下是一些具体的优化建议&#xff1a; 网站头部信息优化 标题标签&#xff08;TitleTag&#xff09;优化…...

网络测试工具

工具介绍&#xff1a; 这是一个功能完整的网络测速工具&#xff0c;可以测试网络的下载速度、上传速度和延迟。 功能特点&#xff1a; 1. 速度测试 - 下载速度测试 - 上传速度测试 - Ping延迟测试 - 自动选择最佳服务器 2. 实时显示 - 进度条显示测试进度 - 实时显示测试状…...

使用HttpClient和HttpRequest发送HTTP请求

项目中经常会用到向第三方系统发送请求来传递数据或者获得信息&#xff0c;一般用的比较多的为HttpClient 和 HttpRequest&#xff0c;这里简要总结一下 HttpClient 和 HttpRequest 的用法 一、HttpClient 1. 发送get请求 public static String get(String url, Map<Stri…...

软件工程概论试题五

一、多选 1.好的软件的基本属性包括()。 A. 效率 B. 可依赖性和信息安全性 C. 可维护性 D.可接受性 正答&#xff1a;ABCD 2.软件工程的三要素是什么()? A. 结构化 B. 工具 C.面向对象 D.数据流! E.方法 F.过程 正答&#xff1a;BEF 3.下面中英文术语对照哪些是正确的、且是属…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...