PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
基于YOLOv8深度学习的学生课堂行为检测识别系统,其能识别三种学生课堂行为:names: ['举手', '读书', '写字']
具体图片见如下:
第一步:YOLOv8介绍
YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,在还没有开源时就收到了用户的广泛关注。
YOLOv8 算法的核心特性和改动可以归结为如下:
提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
Backbone:
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。
属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了
Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free
Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)
Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度
第二步:YOLOv8网络结构
第三步:代码展示
# Ultralytics YOLO 🚀, AGPL-3.0 licensefrom pathlib import Pathfrom ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import ROOT, yaml_loadclass YOLO(Model):"""YOLO (You Only Look Once) object detection model."""def __init__(self, model="yolo11n.pt", task=None, verbose=False):"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""path = Path(model)if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch modelnew_instance = YOLOWorld(path, verbose=verbose)self.__class__ = type(new_instance)self.__dict__ = new_instance.__dict__else:# Continue with default YOLO initializationsuper().__init__(model=model, task=task, verbose=verbose)@propertydef task_map(self):"""Map head to model, trainer, validator, and predictor classes."""return {"classify": {"model": ClassificationModel,"trainer": yolo.classify.ClassificationTrainer,"validator": yolo.classify.ClassificationValidator,"predictor": yolo.classify.ClassificationPredictor,},"detect": {"model": DetectionModel,"trainer": yolo.detect.DetectionTrainer,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,},"segment": {"model": SegmentationModel,"trainer": yolo.segment.SegmentationTrainer,"validator": yolo.segment.SegmentationValidator,"predictor": yolo.segment.SegmentationPredictor,},"pose": {"model": PoseModel,"trainer": yolo.pose.PoseTrainer,"validator": yolo.pose.PoseValidator,"predictor": yolo.pose.PosePredictor,},"obb": {"model": OBBModel,"trainer": yolo.obb.OBBTrainer,"validator": yolo.obb.OBBValidator,"predictor": yolo.obb.OBBPredictor,},}class YOLOWorld(Model):"""YOLO-World object detection model."""def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:"""Initialize YOLOv8-World model with a pre-trained model file.Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns defaultCOCO class names.Args:model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.verbose (bool): If True, prints additional information during initialization."""super().__init__(model=model, task="detect", verbose=verbose)# Assign default COCO class names when there are no custom namesif not hasattr(self.model, "names"):self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")@propertydef task_map(self):"""Map head to model, validator, and predictor classes."""return {"detect": {"model": WorldModel,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,"trainer": yolo.world.WorldTrainer,}}def set_classes(self, classes):"""Set classes.Args:classes (List(str)): A list of categories i.e. ["person"]."""self.model.set_classes(classes)# Remove background if it's givenbackground = " "if background in classes:classes.remove(background)self.model.names = classes# Reset method class names# self.predictor = None # reset predictor otherwise old names remainif self.predictor:self.predictor.model.names = classes
第四步:统计训练过程的一些指标,相关指标都有
第五步:运行(支持图片、文件夹、摄像头和视频功能)
第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码
项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统_哔哩哔哩_bilibili
相关文章:

PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
基于YOLOv8深度学习的学生课堂行为检测识别系统,其能识别三种学生课堂行为:names: [举手, 读书, 写字] 具体图片见如下: 第一步:YOLOv8介绍 YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本…...

word2vec 实战应用介绍
Word2Vec 是一种由 Google 在 2013 年推出的重要词嵌入模型,通过将单词映射为低维向量,实现了对自然语言处理任务的高效支持。其核心思想是利用深度学习技术,通过训练大量文本数据,将单词表示为稠密的向量形式,从而捕捉单词之间的语义和语法关系。以下是关于 Word2Vec 实战…...
C# 操作符重载对象详解
.NET学习资料 .NET学习资料 .NET学习资料 一、操作符重载的概念 在 C# 中,操作符重载允许我们为自定义的类或结构体定义操作符的行为。通常,我们熟悉的操作符,如加法()、减法(-)、乘法&#…...

python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理
【1】引言 前序学习进程中,对图像的操作均基于各个像素点上的BGR值不同而展开。 对于彩色图像,每个像素点上的BGR值为三个整数,因为是三通道图像;对于灰度图像,各个像素上的BGR值是一个整数,因为这是单通…...
CNN的各种知识点(四): 非极大值抑制(Non-Maximum Suppression, NMS)
非极大值抑制(Non-Maximum Suppression, NMS) 1. 非极大值抑制(Non-Maximum Suppression, NMS)概念:算法步骤:具体例子:PyTorch实现: 总结: 1. 非极大值抑制(…...
虚幻基础16:locomotion direction
locomotion locomotion:角色运动系统的总称:包含移动、奔跑、跳跃、转向等。 locomotion direction 玩家输入 玩家输入:通常代表玩家想要的移动方向。 direction 可以计算当前朝向与移动方向的Δ。从而实现朝向与移动(玩家输入)方向的分…...

C++游戏开发实战:从引擎架构到物理碰撞
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 C 是游戏开发中最受欢迎的编程语言之一,因其高性能、低延迟和强大的底层控制能力,被广泛用于游戏…...

代理模式——C++实现
目录 1. 代理模式简介 2. 代码示例 1. 代理模式简介 代理模式是一种行为型模式。 代理模式的定义:由于某些原因需要给某对象提供一个代理以控制该对象的访问。这时,访问对象不适合或者不能直接访问引用目标对象,代理对象作为访问对象和目标…...
什么情况下,C#需要手动进行资源分配和释放?什么又是非托管资源?
扩展:如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?-CSDN博客 托管资源的回收有GC自动触发,而非托管资源需要手动释放。 在 C# 中,非托管资源是指那些不由 CLR(…...
LeetCode 2909. 元素和最小的山形三元组 II
**### LeetCode 2909. 元素和最小的山形三元组 II 问题描述 给定一个下标从 0 开始的整数数组 nums,我们需要找到一个“山形三元组”(i, j, k)满足以下条件: i < j < knums[i] < nums[j] 且 nums[k] < nums[j] 并…...
搬迁至bilibili声明
我将搬迁到bilibili ,用户名:北苏清风 在这个用户名上的文章部分将出自csdn的这个账号,均属于本人原创...

【周易哲学】生辰八字入门讲解(八)
😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文讲解【周易哲学】生辰八字入门讲解,期待与你一同探索、学习、进步,一起卷起来叭! 目录 一、六亲女命六亲星六亲宫位相互关系 男命六亲星…...

复制粘贴小工具——Ditto
在日常工作中,复制粘贴是常见的操作,但Windows系统自带的剪贴板功能较为有限,只能保存最近一次的复制记录,这对于需要频繁复制粘贴的用户来说不太方便。今天,我们介绍一款开源、免费且功能强大的剪贴板增强工具——Dit…...

3、从langchain到rag
文章目录 本文介绍向量和向量数据库向量向量数据库 索引开始动手实现rag加载文档数据并建立索引将向量存放到向量数据库中检索生成构成一条链 本文介绍 从本节开始,有了上一节的langchain基础学习,接下来使用langchain实现一个rag应用,并稍微…...
稀疏进化训练:机器学习优化算法中的高效解决方案
稀疏进化训练:机器学习优化算法中的高效解决方案 稀疏进化训练:机器学习优化算法中的高效解决方案引言第一部分:背景与动机1.1 传统优化算法的局限性1.2 进化策略的优势1.3 稀疏性的重要性 第二部分:稀疏进化训练的核心思想2.1 稀…...

10 Flink CDC
10 Flink CDC 1. CDC是什么2. CDC 的种类3. 传统CDC与Flink CDC对比4. Flink-CDC 案例5. Flink SQL 方式的案例 1. CDC是什么 CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数…...
【LeetCode 刷题】回溯算法-子集问题
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法子集问题相关的题目解析。 文章目录 78.子集90.子集II 78.子集 题目链接 class Solution:def subsets(self, nums: List[int]) -> List[List[int]]:res, path [], []def dfs(start: int) ->…...
OpenCV 版本不兼容导致的问题
问题和解决方案 今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取 """ cap cv2.VideoCapture(RTSP_URL) print("链接视频流完成") while True:ret, frame cap.rea…...

低成本、高附加值,具有较强的可扩展性和流通便利性的行业
目录 虚拟资源类 1. 网课教程 2. 设计素材 3. 软件工具 服务类 1. 写作服务 2. 咨询顾问 3. 在线教育 4. 社交媒体管理 虚拟资源类 1. 网课教程 特点:高附加值,可复制性强,市场需求大。 执行流程: 选择领域:…...
DirectShow过滤器开发-读视频文件过滤器(再写)
下载本过滤器DLL 本过滤器读取视频文件输出视频流和音频流。流类型由文件决定。已知可读取的文件格式有:AVI,ASF,MOV,MP4,MPG,WMV。 过滤器信息 过滤器名称:读视频文件 过滤器GUID:…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...

轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...

边缘计算网关提升水产养殖尾水处理的远程运维效率
一、项目背景 随着水产养殖行业的快速发展,养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下,而且难以实现精准监控和管理。为了提升尾水处理的效果和效率,同时降低人力成本,某大型水产养殖企业决定…...
CppCon 2015 学习:REFLECTION TECHNIQUES IN C++
关于 Reflection(反射) 这个概念,总结一下: Reflection(反射)是什么? 反射是对类型的自我检查能力(Introspection) 可以查看类的成员变量、成员函数等信息。反射允许枚…...
Yii2项目自动向GitLab上报Bug
Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...