当前位置: 首页 > news >正文

DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b

参数规模

参数规模的区别,模型越大参数数量逐渐增多,参数数量越多,模型能够学习和表示的知识就越丰富,理论上可以处理更复杂的任务,对各种语言现象和语义理解的能力也更强。比如在回答复杂的逻辑推理问题、处理长文本上下文信息时,70B的模型可能会比1.5B的模型表现得更出色。

  • 671B:参数数量最多,模型容量极大,能够学习和记忆海量的知识与信息,对各种复杂语言模式和语义关系的捕捉能力最强。
  • 1.5B-70B:参数数量相对少很多,模型容量依次递增,捕捉语言知识和语义关系的能力也逐渐增强,但整体不如671B模型丰富。

准确性和泛化能力

随着模型规模的增大,在各种基准测试和实际应用中的准确性通常会有所提高。例如在回答事实性问题、进行文本生成等任务时,大规模的模型如 70B、32B 可能更容易给出准确和合理的答案,并且对于未曾见过的数据和任务的泛化能力也更强。小模型如 1.5B、7B 在一些简单任务上可能表现尚可,但遇到复杂或罕见的问题时,准确性可能会降低。

  • 671B:在各类任务上的准确性通常更高,如在数学推理、复杂逻辑问题解决、长文本理解与生成等方面,能更准确地给出答案和合理的解释。
  • 1.5B-70B:随着参数增加准确性逐步提升,但小参数模型在面对复杂任务或罕见问题时,准确性相对较差,如 1.5B、7B、8B 模型可能在一些简单任务上表现尚可,但遇到复杂问题容易出错。

训练成本

模型参数越多,训练所需的计算资源、时间和数据量就越大。训练70B的模型需要大量的GPU计算资源和更长的训练时间,相比之下,1.5B的模型训练成本要低得多。

  • 671B:训练需要大量的计算资源,如众多的高性能 GPU,训练时间极长,并且需要海量的数据来支撑,训练成本极高。
  • 1.5B-70B:训练所需的计算资源和时间相对少很多,对数据量的需求也相对较小,训练成本较低。

推理成本

推理成本在实际应用中,推理阶段大模型需要更多的内存和计算时间来生成结果。例如在部署到本地设备或实时交互场景中,1.5B、7B等较小模型可能更容易满足低延迟、低功耗的要求,而 70B、32B等大模型可能需要更高性能的硬件支持,或者在推理时采用量化等技术来降低资源需求。

  • 671B:推理时需要更多的内存来加载模型参数,生成结果的计算时间也较长,对硬件性能要求很高。
  • 1.5B-70B:在推理时对硬件要求相对较低,加载速度更快,生成结果的时间更短,能更快速地给出响应。

适用场景

轻量级应用,需要快速响应需求可以选择1.5B、7B 这样的小模型可以快速加载和运行,能够在较短时间内给出结果,满足用户的即时需求,小模型适合一些对响应速度要求高、硬件资源有限的场景,如手机端的智能助手、简单的文本生成工具等;在科研、学术研究、专业内容创作等对准确性和深度要求较高的领域,选择70B、32B等大模型更适合。

  • 671B:适用于对准确性和性能要求极高、对成本不敏感的场景,如大型科研机构进行前沿科学研究、大型企业进行复杂的商业决策分析等。
  • 1.5B-7B:适合对响应速度要求高、硬件资源有限的场景,如移动端的简单智能助手、轻量级的文本生成工具等,可快速加载和运行。
  • 8B-14B:可用于一些对模型性能有一定要求,但又没有超高性能硬件支持的场景,如小型企业的日常文本处理、普通的智能客服等。
  • 32B-70B:能满足一些对准确性有较高要求,同时硬件条件相对较好的场景,如专业领域的知识问答系统、中等规模的内容创作平台等。

关于DeepSeek大模型费用价格,请参考这篇文章:DeepSeek模型价格:R1+V3最新收费标准,低至0.1元百万tokens

相关文章:

DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?

deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本…...

一、html笔记

(一)前端概述 1、定义 前端是Web应用程序的前台部分,运行在PC端、移动端等浏览器上,展现给用户浏览的网页。通过HTML、CSS、JavaScript等技术实现,是用户能够直接看到和操作的界面部分。上网就是下载html文档,浏览器是一个解释器,运行从服务器下载的html文件,解析html、…...

AI大模型开发原理篇-2:语言模型雏形之词袋模型

基本概念 词袋模型(Bag of Words,简称 BOW)是自然语言处理和信息检索等领域中一种简单而常用的文本表示方法,它将文本看作是一组单词的集合,并忽略文本中的语法、词序等信息,仅关注每个词的出现频率。 文本…...

基于微信小程序的实习记录系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

【LLM】DeepSeek-R1-Distill-Qwen-7B部署和open webui

note DeepSeek-R1-Distill-Qwen-7B 的测试效果很惊艳,CoT 过程可圈可点,25 年应该值得探索更多端侧的硬件机会。 文章目录 note一、下载 Ollama二、下载 Docker三、下载模型四、部署 open webui 一、下载 Ollama 访问 Ollama 的官方网站 https://ollam…...

【Elasticsearch】 Intervals Query

Elasticsearch Intervals Query 返回基于匹配术语的顺序和接近度的文档。 intervals 查询使用 匹配规则,这些规则由一小组定义构建而成。这些规则然后应用于指定 field 中的术语。 这些定义生成覆盖文本中术语的最小间隔序列。这些间隔可以进一步由父源组合和过滤…...

DeepSeek技术深度解析:从不同技术角度的全面探讨

DeepSeek技术深度解析:从不同技术角度的全面探讨 引言 DeepSeek是一个集成了多种先进技术的平台,旨在通过深度学习和其他前沿技术来解决复杂的问题。本文将从算法、架构、数据处理以及应用等不同技术角度对DeepSeek进行详细分析。 一、算法层面 深度学…...

Docker 部署 Starrocks 教程

Docker 部署 Starrocks 教程 StarRocks 是一款高性能的分布式分析型数据库,主要用于 OLAP(在线分析处理)场景。它最初是由百度的开源团队开发的,旨在为大数据分析提供一个高效、低延迟的解决方案。StarRocks 支持实时数据分析&am…...

【LLM-agent】(task6)构建教程编写智能体

note 构建教程编写智能体 文章目录 note一、功能需求二、相关代码(1)定义生成教程的目录 Action 类(2)定义生成教程内容的 Action 类(3)定义教程编写智能体(4)交互式操作调用教程编…...

29.Word:公司本财年的年度报告【13】

目录 NO1.2.3.4 NO5.6.7​ NO8.9.10​ NO1.2.3.4 另存为F12:考生文件夹:Word.docx选中绿色标记的标题文本→样式对话框→单击右键→点击样式对话框→单击右键→修改→所有脚本→颜色/字体/名称→边框:0.5磅、黑色、单线条:点…...

14 2D矩形模块( rect.rs)

一、 rect.rs源码 // Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENS…...

【Unity3D】实现2D角色/怪物死亡消散粒子效果

核心&#xff1a;这是一个Unity粒子系统自带的一种功能&#xff0c;可将粒子生成控制在一个Texture图片网格范围内&#xff0c;并且粒子颜色会自动采样图片的像素点颜色&#xff0c;之后则是粒子编辑出消散效果。 Particle System1物体&#xff08;爆发式随机速度扩散10000个粒…...

Linux - 进程间通信(3)

目录 3、解决遗留BUG -- 边关闭信道边回收进程 1&#xff09;解决方案 2&#xff09;两种方法相比较 4、命名管道 1&#xff09;理解命名管道 2&#xff09;创建命名管道 a. 命令行指令 b. 系统调用方法 3&#xff09;代码实现命名管道 构建类进行封装命名管道&#…...

3、C#基于.net framework的应用开发实战编程 - 实现(三、三) - 编程手把手系列文章...

三、 实现&#xff1b; 三&#xff0e;三、编写应用程序&#xff1b; 此文主要是实现应用的主要编码工作。 1、 分层&#xff1b; 此例子主要分为UI、Helper、DAL等层。UI负责便签的界面显示&#xff1b;Helper主要是链接UI和数据库操作的中间层&#xff1b;DAL为对数据库的操…...

C++编程语言:抽象机制:泛型编程(Bjarne Stroustrup)

泛型编程(Generic Programming) 目录 24.1 引言(Introduction) 24.2 算法和(通用性的)提升(Algorithms and Lifting) 24.3 概念(此指模板参数的插件)(Concepts) 24.3.1 发现插件集(Discovering a Concept) 24.3.2 概念与约束(Concepts and Constraints) 24.4 具体化…...

Python面试宝典13 | Python 变量作用域,从入门到精通

今天&#xff0c;我们来深入探讨一下 Python 中一个非常重要的概念——变量作用域。理解变量作用域对于编写清晰、可维护、无 bug 的代码至关重要。 什么是变量作用域&#xff1f; 简单来说&#xff0c;变量作用域就是指一个变量在程序中可以被访问的范围。Python 中有四种作…...

基于最近邻数据进行分类

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 完整代码&#xff1a; import torch import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt# 生成一个简单的数据…...

DeepSeek V3 vs R1:大模型技术路径的“瑞士军刀“与“手术刀“进化

DeepSeek V3 vs R1&#xff1a;——大模型技术路径的"瑞士军刀"与"手术刀"进化 大模型分水岭&#xff1a;从通用智能到垂直突破 2023年&#xff0c;GPT-4 Turbo的发布标志着通用大模型进入性能瓶颈期。当模型参数量突破万亿级门槛后&#xff0c;研究者们开…...

一、TensorFlow的建模流程

1. 数据准备与预处理&#xff1a; 加载数据&#xff1a;使用内置数据集或自定义数据。 预处理&#xff1a;归一化、调整维度、数据增强。 划分数据集&#xff1a;训练集、验证集、测试集。 转换为Dataset对象&#xff1a;利用tf.data优化数据流水线。 import tensorflow a…...

指导初学者使用Anaconda运行GitHub上One - DM项目的步骤

以下是指导初学者使用Anaconda运行GitHub上One - DM项目的步骤&#xff1a; 1. 安装Anaconda 下载Anaconda&#xff1a; 让初学者访问Anaconda官网&#xff08;https://www.anaconda.com/products/distribution&#xff09;&#xff0c;根据其操作系统&#xff08;Windows、M…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...