当前位置: 首页 > news >正文

Vue3 表单:全面解析与最佳实践

Vue3 表单:全面解析与最佳实践

引言

随着前端技术的发展,Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本,带来了许多改进和新的特性。其中,表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 中的表单处理,包括基础用法、表单验证、双向绑定等,并提供一些最佳实践。

Vue3 表单基础

1.1 创建表单

在 Vue3 中,创建表单非常简单。首先,我们需要定义一个 <form> 元素,并为其绑定 v-model 指令,这样就可以实现数据的双向绑定。

<form @submit.prevent="submitForm"><input type="text" v-model="formData.name"><input type="email" v-model="formData.email"><button type="submit">提交</button>
</form>

在上面的代码中,我们定义了一个包含两个输入框的表单,并使用 v-model 指令将输入框的值与 formData 对象的属性进行绑定。

1.2 表单验证

Vue3 提供了内置的表单验证功能,我们可以使用 vuelidate 插件来实现复杂的验证逻辑。

<form @submit.prevent="submitForm"><input type="text" v-model="formData.name" v-validate="'required|min:3'"><input type="email" v-model="formData.email" v-validate="'required|email'"><button type="submit">提交</button>
</form>

在上面的代码中,我们使用了 v-validate 指令对输入框进行了验证。如果验证失败,将显示错误信息。

Vue3 表单双向绑定

2.1 数据绑定

在 Vue3 中,我们使用 v-model 指令实现数据的双向绑定。当输入框的值发生变化时,v-model 会自动更新对应的数据属性。

<input type="text" v-model="formData.name">

在上面的代码中,当用户在输入框中输入内容时,formData.name 的值也会相应地更新。

2.2 表单数据回显

当表单数据需要回显到输入框时,我们可以使用 v-model 指令实现。

<form @submit.prevent="submitForm"><input type="text" v-model="formData.name"><input type="email" v-model="formData.email"><button type="submit">提交</button>
</form>

在上面的代码中,当用户提交表单时,formData 对象中的数据将被发送到服务器。

Vue3 表单最佳实践

3.1 使用计算属性

在处理表单数据时,我们可以使用计算属性来简化代码,提高可读性。

computed: {isValid() {return this.formData.name && this.formData.email;}
}

在上面的代码中,我们使用计算属性 isValid 来判断表单数据是否有效。

3.2 避免使用表单验证库

虽然 Vue3 内置了表单验证功能,但在实际开发中,我们建议使用专门的表单验证库,如 VeeValidate,以提高验证逻辑的灵活性和可扩展性。

3.3 使用 v-model 处理复选框和单选按钮

在处理复选框和单选按钮时,我们可以使用 v-model 指令实现数据的双向绑定。

<form @submit.prevent="submitForm"><input type="checkbox" v-model="formData.agree"><button type="submit">提交</button>
</form>

在上面的代码中,我们使用 v-model 指令将复选框的值与 formData.agree 属性进行绑定。

总结

本文全面解析了 Vue3 中的表单处理,包括基础用法、表单验证、双向绑定等。通过学习本文,你将能够更好地掌握 Vue3 表单的使用,并在实际项目中发挥其优势。希望本文对你有所帮助!

相关文章:

Vue3 表单:全面解析与最佳实践

Vue3 表单&#xff1a;全面解析与最佳实践 引言 随着前端技术的发展&#xff0c;Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本&#xff0c;带来了许多改进和新的特性。其中&#xff0c;表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 …...

MySQl的日期时间加

MySQL日期相关_mysql 日期加减-CSDN博客MySQL日期相关_mysql 日期加减-CSDN博客 raise notice 查询目标 site:% model:% date:% target:%,t_shipment_date.site,t_shipment_date.model,t_shipment_date.plant_date,v_date_shipment_qty_target;...

实战:如何利用网站日志诊断并解决收录问题?

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/50.html 利用网站日志诊断并解决收录问题是一种非常有效的方法。以下是一个实战指南&#xff0c;帮助你如何利用网站日志来诊断并解决网站的收录问题&#xff1a; 一、获取并分析网站日志 …...

每日一题——有效括号序列

有效括号序列 题目描述数据范围&#xff1a;复杂度要求&#xff1a; 示例题解代码实现代码解析1. 定义栈和栈操作2. 栈的基本操作3. 主函数 isValid4. 返回值 时间和空间复杂度分析 题目描述 给出一个仅包含字符 (, ), {, }, [, ] 的字符串&#xff0c;判断该字符串是否是一个…...

PyTorch数据建模

回归分析 import torch import numpy as np import pandas as pd from torch.utils.data import DataLoader,TensorDataset import time strat = time.perf_counter()...

OpenAI 实战进阶教程 - 第二节:生成与解析结构化数据:从文本到表格

目标 学习如何使用 OpenAI API 生成结构化数据&#xff08;如 JSON、CSV 格式&#xff09;。掌握解析数据并导出表格文件的技巧&#xff0c;以便适用于不同实际场景。 场景背景 假设你是一名开发人员&#xff0c;需要快速生成一批产品信息列表&#xff08;如名称、价格、描述…...

二叉树--链式存储

1我们之前学了二叉树的顺序存储&#xff08;这种顺序存储的二叉树被称为堆&#xff09;&#xff0c;我们今天来学习一下二叉树的链式存储&#xff1a; 我们使用链表来表示一颗二叉树&#xff1a; ⽤链表来表⽰⼀棵⼆叉树&#xff0c;即⽤链来指⽰元素的逻辑关系。通常的⽅法是…...

Windows 中的 WSL:开启你的 Linux 之旅

今天在安装windows上安装Docker Desktop的时候&#xff0c;遇到了WSL。下面咱们就学习下。 欢迎来到涛涛聊AI 一、什么是 WSL&#xff1f; WSL&#xff0c;全称为 Windows Subsystem for Linux&#xff0c;是微软为 Windows 系统开发的一个兼容层&#xff0c;它允许用户在 Win…...

2.3学习总结

今天做了下上次测试没做出来的题目&#xff0c;作业中做了一题&#xff0c;看了下二叉树&#xff08;一脸懵B&#xff09; P2240&#xff1a;部分背包问题 先求每堆金币的性价比&#xff08;价值除以重量&#xff09;&#xff0c;将这些金币由性价比从高到低排序。 对于排好…...

前端力扣刷题 | 6:hot100之 矩阵

73. 矩阵置零 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 法一&#xff1a; var setZeroes function(matrix) {let setX new Set(); // 用于存储需要置零的行索引let setY new Set(); //…...

docker gitlab arm64 版本安装部署

前言&#xff1a; 使用RK3588 部署gitlab 平台作为个人或小型团队办公代码版本使用 1. docker 安装 sudo apt install docker* 2. 获取arm版本的gitlab GitHub - zengxs/gitlab-arm64: GitLab docker image (CE & EE) for arm64 git clone https://github.com/zengxs…...

路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)

鸽群算法(Pigeon-inspired Optimization, PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。 更多的仿生群体算法…...

【AudioClassificationModelZoo-Pytorch】基于Pytorch的声音事件检测分类系统

源码&#xff1a;https://github.com/Shybert-AI/AudioClassificationModelZoo-Pytorch 模型测试表 模型网络结构batch_sizeFLOPs(G)Params(M)特征提取方式数据集类别数量模型验证集性能EcapaTdnn1280.486.1melUrbanSound8K10accuracy0.974, precision0.972 recall0.967, F1-s…...

一文讲解Java中的ArrayList和LinkedList

ArrayList和LinkedList有什么区别&#xff1f; ArrayList 是基于数组实现的&#xff0c;LinkedList 是基于链表实现的。 二者用途有什么不同&#xff1f; 多数情况下&#xff0c;ArrayList更利于查找&#xff0c;LinkedList更利于增删 由于 ArrayList 是基于数组实现的&#…...

CNN的各种知识点(五):平均精度均值(mean Average Precision, mAP)

平均精度均值&#xff08;mean Average Precision, mAP&#xff09; 1. 平均精度均值&#xff08;mean Average Precision, mAP&#xff09;概念&#xff1a;计算步骤&#xff1a;具体例子&#xff1a;重要说明&#xff1a;典型值范围&#xff1a; 总结&#xff1a; 1. 平均精度…...

【优先算法】专题——前缀和

目录 一、【模版】前缀和 参考代码&#xff1a; 二、【模版】 二维前缀和 参考代码&#xff1a; 三、寻找数组的中心下标 参考代码&#xff1a; 四、除自身以外数组的乘积 参考代码&#xff1a; 五、和为K的子数组 参考代码&#xff1a; 六、和可被K整除的子数组 参…...

gitea - fatal: Authentication failed

文章目录 gitea - fatal: Authentication failed概述run_gitea_on_my_pkm.bat 笔记删除windows凭证管理器中对应的url认证凭证启动gitea服务端的命令行正常用 TortoiseGit 提交代码备注END gitea - fatal: Authentication failed 概述 本地的git归档服务端使用gitea. 原来的用…...

基于Spring Security 6的OAuth2 系列之八 - 授权服务器--Spring Authrization Server的基本原理

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级…...

蓝桥与力扣刷题(234 回文链表)

题目&#xff1a;给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true示例 2&#xff1a; 输入&…...

Google C++ Style / 谷歌C++开源风格

文章目录 前言1. 头文件1.1 自给自足的头文件1.2 #define 防护符1.3 导入你的依赖1.4 前向声明1.5 内联函数1.6 #include 的路径及顺序 2. 作用域2.1 命名空间2.2 内部链接2.3 非成员函数、静态成员函数和全局函数2.4 局部变量2.5 静态和全局变量2.6 thread_local 变量 3. 类3.…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...