当前位置: 首页 > news >正文

编程领域的IO模型(BIO,NIO,AIO)

目前对于市面上绝大多数的应用来说,不能实现的业务功能太少了。更多的是对底层细节,性能优化的追求。其中IO就是性能优化中很重要的一环。Redis快,mysql缓冲区存在的意义。都跟IO有着密切关系。IO其实我们都在用,输入输出流这块。但是没关注到计算机组成原理那块我觉得还是差点意思。把整个IO理解清楚,就得从计算机的交互开始。我近期学习了很多篇IO文章,特地做下总结。

首先大概念,IO,输入输出。

输入理解为键盘,输入给谁,肯定是电脑。输入到电脑里做什么,一般就是用做存储。那就可以理解为从外部媒介到电脑内核这个过程就是输入。同理经过电脑内核展现出来的就叫输出。那么电脑内核在做什么事?电脑内核又分为用户空间和内核空间。内核空间是操作系统层面的,用户无权直接访问。用户空间是个人的。它与内核空间做任何信息交互就是我们编程领域说的IO了。一次操作系统的IO分数据准备和数据复制。讲到IO就离不开IO模型。IO模型理解就是同样操作,不同模型产生不同效率的一种方式。常见的三种 BIO,NIO,AIO。NIO中又多分为select,poll.epoll模式(这三类模式多路复用),说白了就是操作系统提供的三类监听socket的函数。NIO中又提出了事件驱动和信号驱动的概念。其中epoll模式的信号驱动就是目前主流的IO模型。很多源码中用的都是这种模型。


就很直观举个例子,理解下各类IO模型。但例子仅仅是针对IO中的数据准备阶段

小明去吃饭,餐厅总共有五个位置。到那里发现没位置了,就一直等。等到有位置就可以吃。这是BIO。

小明去吃饭,餐厅总共有五个位置。到那里发现没位置了,餐厅告诉他晚点再来,于是他就走了第二次再来询问有没有位置,直到他问到刚好有位置了就可以吃。这是NIO。

小明去吃饭,餐厅总共有五个位置。到那里发现没位置了,餐厅告诉他等有位置了再通知他来,于是他只是约了号,餐厅有位置了就告诉他来吃,但此时他是不知道是哪个位置。只能自己去再问一次哪个位置空缺了。这是NIO多路复用。采用事件驱动。

为了解决不知道是哪个位置的无效遍历,加上了信号驱动。epoll中用的就是这个模式。

把上面的所有问题统一为一类,都是为了解决数据准备阶段的监听回复。但没解决数据复制阶段的阻塞。那块还是同步的。AIO就是把NIO的epoll模式后面数据复制的过程也做成异步。就完成了真正意义上的异步。


再分析下每种模型的指令,就是因为发送的指令不同才呈现出不同的效果。

BIO 直接发送recvfrom指令,并且内核无明确返回。

NIO 直接发送recvfrom指令,并且内核明确返回EWOULDBLOCK错误码表示未准备好数据。

NIO多路复用-select模式。发送select指令,等待内核返回任意一个。都是同一个进程发起的select指令会监听内核中的多个fd。fd就是每操作文件是内核的一个状态码。select模式监听的IO最大连接数有限,在Linux系统上一般为1024。因为采用的是固定长度的 BitsMap实现。

NIO多路复用-poll模式。发送poll指令,同select模式。等待内核返回任意一个。都是同一个进程发起的select指令会监听内核中的多个fd。poll模式采用动态数组实现,主要解决了的IO最大连接数有限问题。

NIO多路复用-epoll模式。主要三个指令epoll_create、epoll_ctl、epoll_wait。发送epoll_create指令,一旦基于某个fd就绪时,内核会采用回调机制,迅速激活这个fd,当进程调用epoll_wait()时便得到通知。这时候是能精确定位到fd的。但还存在一次调用epoll_wait调用主动询问的过程。于是便出现了信号驱动IO,信号驱动不再用主动询问的方式去确认数据是否就绪,而是向内核发送一个信号,调用sigaction的时候建立一个SIGIO的信号。内核数据准备好后,再通过SIGIO信号通知应用进程。这样就不需要主动询问了。

AIO直接发送aio-read指令,就可以完成全部流程的操作。


I/O模型的应用非常广泛,它们被集成在多种主流框架中以提高性能和可扩展性。如Netty,Redis。理解这些I/O模型的原理和特点,可以帮助我们更好地设计和优化程序,提高系统的性能和可靠性。希望本文能够帮助读者深入理解I/O模型。

参考 看一遍就理解:IO模型详解 - 知乎

相关文章:

编程领域的IO模型(BIO,NIO,AIO)

目前对于市面上绝大多数的应用来说,不能实现的业务功能太少了。更多的是对底层细节,性能优化的追求。其中IO就是性能优化中很重要的一环。Redis快,mysql缓冲区存在的意义。都跟IO有着密切关系。IO其实我们都在用,输入输出流这块。…...

DeepSeek和ChatGPT的对比

最近DeepSeek大放异彩,两者之间有什么差异呢?根据了解到的信息,简单做了一个对比。 DeepSeek 和 ChatGPT 是两种不同的自然语言处理(NLP)模型架构,尽管它们都基于 Transformer 架构,但在设计目标…...

Pyqt 的QTableWidget组件

QTableWidget 是 PyQt6 中的一个表格控件,用于显示和编辑二维表格数据。它继承自 QTableView,提供了更简单的方式来处理表格数据,适合用于需要展示结构化数据的场景。 1. 常用方法 1.1 构造函数 QTableWidget(parent: QWidget None)&#x…...

4. 【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--什么是微服务--微服务设计原则与最佳实践

相比传统的单体应用,微服务架构通过将大型系统拆分成多个独立的小服务,不仅提升了系统的灵活性和扩展性,也带来了许多设计和运维上的挑战。如何在设计和实现微服务的过程中遵循一系列原则和最佳实践,从而构建一个稳定、高效、易维…...

网络安全威胁框架与入侵分析模型概述

引言 “网络安全攻防的本质是人与人之间的对抗,每一次入侵背后都有一个实体(个人或组织)”。这一经典观点概括了网络攻防的深层本质。无论是APT(高级持续性威胁)攻击、零日漏洞利用,还是简单的钓鱼攻击&am…...

树和二叉树_7

树和二叉树_7 一、leetcode-102二、题解1.引库2.代码 一、leetcode-102 二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 样例输入:root [3,9,20,null,nu…...

不同标签页、iframe或者worker之间的广播通信——BroadcastChannel

BroadcastChannel是一个现代浏览器提供的 API,用于在同一浏览器的不同浏览上下文(如不同的标签页、iframe 或者 worker)之间进行消息传递。它允许你创建一个广播频道,通过该频道可以在不同的浏览上下文之间发送和接收消息。 Broa…...

开源CodeGPT + DeepSeek-R1 是否可以替代商业付费代码辅助工具

开源CodeGPT + DeepSeek-R1 是否可以替代商业付费代码辅助工具 背景与研究目的 在快速发展的软件开发领域,代码辅助工具已成为提高开发效率和质量的关键。然而,商业付费工具如通义灵码和腾讯AI代码助手,尽管功能强大,但其高昂的成本和许可证限制,使得许多企业寻求更具吸…...

AUTOSAR汽车电子嵌入式编程精讲300篇-基于FPGA的CAN FD汽车总线数据交互系统设计

目录 前言 汽车总线以及发展趋势 汽车总线技术 汽车总线发展趋势 CAN FD总线国内外研究现状 2 系统方案及CAN FD协议分析 2.1系统控制方案设计 2.2 CAN FD总线帧结构分析 2.2.1数据帧分析 2.2.2远程帧分析 2.2.3过载帧分析 2.2.4错误帧分析 2.2.5帧间隔分析 2.3位…...

STC51案例操作

案例 1&#xff1a;LED 闪烁 功能描述&#xff1a;通过操作 P1 口寄存器&#xff0c;让连接在 P1.0 引脚的 LED 以一定间隔闪烁。 #include <reg51.h>// 延时函数 void delay(unsigned int time) {unsigned int i, j;for (i 0; i < time; i)for (j 0; j < 123; …...

多光谱技术在华为手机上的应用发展历史

2018 年&#xff0c;华为 P20 系列首次搭载 5 通道色温传感器&#xff0c;可帮助手机在不同光照条件下保持画面色彩一致性。 2020 年&#xff0c;华为 P40 系列搭载 8 通道多光谱色温传感器&#xff08;实际为 11 通道&#xff0c;当时只用 8 个通道检测可见光&#xff09;&am…...

C语言:函数栈帧的创建和销毁

目录 1.什么是函数栈帧2.理解函数栈帧能解决什么问题3.函数栈帧的创建和销毁的过程解析3.1 什么是栈3.2 认识相关寄存器和汇编指令3.3 解析函数栈帧的创建和销毁过程3.3.1 准备环境3.3.2 函数的调用堆栈3.3.3 转到反汇编3.3.4 函数栈帧的创建和销毁 1.什么是函数栈帧 在写C语言…...

NLP_[2]_文本预处理-文本数据分析

文章目录 4 文本数据分析1 文件数据分析介绍2 数据集说明3 获取标签数量分布4 获取句子长度分布5 获取正负样本长度散点分布6 获取不同词汇总数统计7 获取训练集高频形容词词云8 小结 4 文本数据分析 学习目标 了解文本数据分析的作用.掌握常用的几种文本数据分析方法. 1 文…...

【工具篇】深度揭秘 Midjourney:开启 AI 图像创作新时代

家人们,今天咱必须好好唠唠 Midjourney 这个在 AI 图像生成领域超火的工具!现在 AI 技术发展得那叫一个快,各种工具层出不穷,Midjourney 绝对是其中的明星产品。不管你是专业的设计师、插画师,还是像咱这种对艺术创作有点小兴趣的小白,Midjourney 都能给你带来超多惊喜,…...

从O(k*n)到O(1):如何用哈希表终结多层if判断的性能困局

【前言】   本文将以哈希表重构实战为核心&#xff0c;完整展示如何将传统条件匹配逻辑(上千层if-else判断)转化为O(1)的哈希表高效实现。通过指纹验证场景的代码级解剖&#xff0c;您将深入理解&#xff1a;   1.哈希函数设计如何规避冲突陷阱   2.链式寻址法的工程实现…...

视频采集卡接口

采集卡的正面有MIC IN、LINE IN以及AUDIO OUT三个接口&#xff0c; MIC IN为麦克风输入&#xff0c;我们如果要给采集到的视频实时配音或者是在直播的时候进行讲解&#xff0c;就可以在这里插入一个麦克风&#xff0c; LINE IN为音频线路输入&#xff0c;可以外接播放背景音乐…...

蓝桥杯真题 - 像素放置 - 题解

题目链接&#xff1a;https://www.lanqiao.cn/problems/3508/learning/ 个人评价&#xff1a;难度 3 星&#xff08;满星&#xff1a;5&#xff09; 前置知识&#xff1a;深度优先搜索 整体思路 深搜&#xff0c;在搜索过程中进行剪枝&#xff0c;剪枝有以下限制条件&#xf…...

vue基础(三)

常用指令 1. v-bind 固定绑定与动态绑定&#xff1a; 语法&#xff1a; 标准语法&#xff1a;v-bind:属性"动态数据" 简写语法&#xff1a;:属性"动态数拓" <!DOCTYPE html> <html lang"en"><head><me…...

使用Python开发PPTX压缩工具

引言 在日常办公中&#xff0c;PPT文件往往因为图片过大而导致文件体积过大&#xff0c;不便于传输和存储。为了应对这一问题&#xff0c;我们可以使用Python的wxPython图形界面库结合python-pptx和Pillow&#xff0c;开发一个简单的PPTX压缩工具。本文将详细介绍如何实现这一…...

ubuntu24.04安装布置ros

最近换电脑布置机器人环境&#xff0c;下了24.04&#xff0c;但是网上的都不太合适&#xff0c;于是自己试着布置好了&#xff0c;留作有需要的人一起看看。 文章目录 目录 前言 一、确认 ROS 发行版名称 二、检查你的 Ubuntu 版本 三、安装正确的 ROS 发行版 四、对于Ubuntu24…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...