SQL 大厂面试题目(由浅入深)
今天给大家带来一份大厂SQL面试覆盖:基础语法 → 复杂查询 → 性能优化 → 架构设计,大家需深入理解执行原理并熟悉实际业务场景的解决方案。
1. 基础查询与过滤
题目:查询 employees 表中所有薪资(salary)大于 10000 且部门编号(dept_id)为 5 的员工姓名(name)和入职日期(hire_date)。
SELECT name, hire_date
FROM employees
WHERE salary > 10000 AND dept_id = 5;
2. 聚合函数与分组
题目:统计每个部门(dept_id)的平均薪资,并仅显示平均薪资高于 15000 的部门。
SELECT dept_id, AVG(salary) AS avg_salary
FROM employees
GROUP BY dept_id
HAVING AVG(salary) > 15000;
3. 多表连接(JOIN)
题目:查询员工姓名(name)及其所属部门名称(dept_name),表结构为 employees(id, name, dept_id)和 departments(id, dept_name)。
SELECT e.name, d.dept_name
FROM employees e
JOIN departments d ON e.dept_id = d.id;
4. 子查询与 EXISTS
题目:查询没有订单的客户(customers 表的 id 不在 orders 表的 customer_id 中)。
SELECT c.id, c.name
FROM customers c
WHERE NOT EXISTS (SELECT 1 FROM orders o WHERE o.customer_id = c.id
);
5. 窗口函数
题目:查询每个部门薪资排名前 3 的员工姓名和薪资。
WITH ranked_employees AS (SELECT name, salary, dept_id,RANK() OVER (PARTITION BY dept_id ORDER BY salary DESC) AS rankFROM employees
)
SELECT name, salary, dept_id
FROM ranked_employees
WHERE rank <= 3;
6. 递归查询(CTE)
题目:查询树形结构表 categories(id, name, parent_id)中 ID=5 的所有子节点。
WITH RECURSIVE sub_categories AS (SELECT id, name, parent_idFROM categoriesWHERE id = 5UNION ALLSELECT c.id, c.name, c.parent_idFROM categories cJOIN sub_categories sc ON c.parent_id = sc.id
)
SELECT * FROM sub_categories;
7. 索引优化
题目:在 orders 表中,如何为 customer_id 和 order_date 设计联合索引以优化查询 WHERE customer_id = 100 AND order_date > '2024-02-10'?
答案:
CREATE INDEX idx_customer_order_date ON orders (customer_id, order_date);
原理:联合索引按最左前缀匹配原则,优先按 customer_id 过滤,再按 order_date 范围查询。
8. 事务与隔离级别
题目:解释“不可重复读”(Non-Repeatable Read)和“幻读”(Phantom Read)的区别。
答案:
不可重复读:同一事务中两次读取同一行数据,结果不同(由其他事务的 UPDATE 或 DELETE 导致)。
幻读:同一事务中两次查询同一范围的数据,结果行数不同(由其他事务的 INSERT 导致)。
9. 执行计划分析
题目:以下查询的执行计划中出现了 Full Table Scan,如何优化?
SELECT * FROM products WHERE category = 'Electronics' AND price > 1000;
答案:
添加联合索引 (category, price):
CREATE INDEX idx_category_price ON products (category, price);
10. 复杂场景设计
题目:设计一个数据库表结构,支持用户每日签到(可重复签到但仅第一次有效),并统计某用户最近 30 天的签到次数。
答案:
CREATE TABLE user_checkins (user_id INT,checkin_date DATE,PRIMARY KEY (user_id, checkin_date) -- 唯一约束避免重复
);-- 统计最近30天签到次数
SELECT COUNT(*)
FROM user_checkins
WHERE user_id = 100
AND checkin_date >= CURRENT_DATE - INTERVAL '30 days';
11. 死锁分析与解决
题目:两个事务分别执行以下操作,如何发生死锁?
事务1:UPDATE accounts SET balance = balance - 100 WHERE id = 1; UPDATE accounts SET balance = balance + 100 WHERE id = 2;
事务2:UPDATE accounts SET balance = balance - 200 WHERE id = 2; UPDATE accounts SET balance = balance + 200 WHERE id = 1;
答案:
事务1锁定id=1后等待id=2,事务2锁定id=2后等待id=1,形成循环等待。
解决方案:按固定顺序更新(如先更新id小的账户)。
12. 时间窗口统计
题目:统计每小时内订单量最多的前3个小时(表 orders 含字段 order_time)。
WITH hourly_orders AS (SELECT EXTRACT(HOUR FROM order_time) AS hour,COUNT(*) AS order_countFROM ordersGROUP BY EXTRACT(HOUR FROM order_time)
)
SELECT hour, order_count
FROM hourly_orders
ORDER BY order_count DESC
LIMIT 3;
13. 数据去重
题目:删除 logs 表中重复记录(保留id最小的一条)。
DELETE FROM logs
WHERE id NOT IN (SELECT MIN(id)FROM logsGROUP BY user_id, log_time, content
);
14. 分页查询优化
题目:优化大表的分页查询 SELECT * FROM users ORDER BY id LIMIT 1000000, 10;。
答案:
使用覆盖索引 + 游标分页:
SELECT * FROM users
WHERE id > 1000000
ORDER BY id
LIMIT 10;
15. 分区表设计
题目:如何按时间范围对 sales 表进行分区以优化查询性能?
答案:
-- 按月分区(以 PostgreSQL 为例)
CREATE TABLE sales (sale_id SERIAL,sale_date DATE,amount NUMERIC
) PARTITION BY RANGE (sale_date);CREATE TABLE sales_2023_01 PARTITION OF salesFOR VALUES FROM ('2024-01-10') TO ('2024-02-10');
16. JSON 数据处理
题目:从 products 表的 attributes(JSON 字段)中提取颜色(color)和尺寸(size)。
-- 以 MySQL 为例
SELECT attributes->>'$.color' AS color,attributes->>'$.size' AS size
FROM products;
17. 高级窗口函数
题目:计算每个员工薪资与所在部门平均薪资的差值。
SELECT name,salary,salary - AVG(salary) OVER (PARTITION BY dept_id) AS diff_from_avg
FROM employees;
18. 动态SQL与存储过程
题目:编写存储过程,根据输入的城市名动态查询 customers 表。
-- 以 PostgreSQL 为例
CREATE OR REPLACE PROCEDURE get_customers_by_city(city_name TEXT)
LANGUAGE plpgsql
AS $$
BEGINEXECUTE 'SELECT * FROM customers WHERE city = $1' USING city_name;
END;
$$;
19. 分布式ID生成方案
题目:在分布式系统中,如何设计全局唯一的订单ID?
答案:
雪花算法(Snowflake):时间戳 + 机器ID + 序列号。
UUID:随机生成,但存储效率低。
数据库分段分配:中央数据库分配ID范围给各节点。
20. 数据一致性保障
题目:如何实现“扣减库存时防止超卖”?
答案:
-- 事务内原子操作(以 MySQL 为例)
START TRANSACTION;
SELECT stock FROM products WHERE id = 100 FOR UPDATE;
UPDATE products SET stock = stock - 1 WHERE id = 100 AND stock > 0;
COMMIT;相关文章:
SQL 大厂面试题目(由浅入深)
今天给大家带来一份大厂SQL面试覆盖:基础语法 → 复杂查询 → 性能优化 → 架构设计,大家需深入理解执行原理并熟悉实际业务场景的解决方案。 1. 基础查询与过滤 题目:查询 employees 表中所有薪资(salary)大于 10000…...
Shader Step和frac函数
Step又称为阶跃函数,在着色器(Shader)编程中,step 函数是一个非常有用的函数,尤其是在GLSL(OpenGL Shading Language)和其他类似的着色器语言中。它用于生成基于阈值的阶跃函数输出。step 函数的…...
FreeRtos实时系统: 十二.FreeRTOS的队列集
FreeRtos实时系统: 十二.FreeRTOS的队列集 一.队列集简介二.队列集相关API函数三.队列集操作实验 一.队列集简介 左边的接收任务会在没接收到队列时会阻塞,如果前面释放信号量这时该任务也获取不到信号量。 右边使用队列集如果获取到,判断句柄是谁&#…...
NLP Word Embeddings
Word representation One-hot形式 在上一周介绍RNN类模型时,使用了One-hot向量来表示单词的方式。它的缺点是将每个单词视为独立的,算法很难学习到单词之间的关系。 比如下面的例子,即使语言模型已经知道orange juice是常用组合词…...
如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B
如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B 一、背景二、解决方案三、操作步骤1.下载模型2.安装依赖3.量化4.生成推理代码5.运行A.缓存上限为128条B.不限制缓存上限C.输出内容 一、背景 随着深度学习的不断发展,大型语言模型(LLM,L…...
2025年二级建造师报名流程图解
2025年二级建造师报名时间!附报名流程! ⏰️已公布25年二建考试时间的省份如下: ️4月19日、20日考试的城市有:贵州 ️5月10日、11日考试的城市有:湖北、陕西、宁夏、甘肃、福建、浙江、江西、黑龙江、河南、湖南、…...
深入浅出:Python 中的异步编程与协程
引言 大家好,今天我们来聊聊 异步编程 和 协程,这是近年来编程语言领域中的热点话题之一,尤其在 Python 中,它作为一种全新的编程模型,已经成为处理 IO密集型 任务的强力工具。尽管很多人对异步编程望而却步࿰…...
八大排序——简单选择排序
目录 1.1基本操作: 1.2动态图: 1.3代码: 代码解释 1. main 方法 2. selectSort 方法 示例运行过程 初始数组 每轮排序后的数组 最终排序结果 代码总结 1.1基本操作: 选择排序(select sorting)也…...
vue使用CSS布局技术,实现div定位到页面底部或顶部并居中功能
<template> <div > <div class"bottom-element"> 我在底部,并居中了 </div> </div> </template> 使用CSS布局技术,通过设置CSS属性来实现页面底部定位。 <style lang"scs…...
Jenkins 部署 之 Mac 一
Jenkins 部署 之 Mac 一 一.Jenkins 部署依赖 JDK 环境 查看 Mac JDK 环境,如果没有安装,先安装 打开终端输入命令:java -version Mac安装配置 JDK 二. 检查 HomeBrew 安装 检查 HomeBrew 是否安装,终端输入命令:brew -v Mac安装HomeB…...
【FastAPI 使用FastAPI和uvicorn来同时运行HTTP和HTTPS的Python应用程序】
在本文中,我们将介绍如何使用 FastAPI和uvicorn来同时运行HTTP和HTTPS的 Python应用程序。 简介 FastAPI是一个高性能的Web框架,可以用于构建快速、可靠的API。它基于Python的类型提示和异步支持,使得开发者可以轻松地编写出安全且高效的代…...
HCIA-路由器相关知识和面试问题
二、 路由器 2.1 关于路由器的知识 2.1.1 什么是路由器 路由器是一种网络层互联设备,主要用于连接多个逻辑上分开的网络,实现不同网络之间的数据路由和通信。它能根据网络层地址(如 IP 地址)来转发数据包,在网络中起…...
Docker+Jenkins自动化部署SpringBoot项目【详解git,jdk,maven,ssh配置等各种配置,附有示例+代码】
文章目录 DockerJenkins部署SpringBoot项目一.准备工作1.1安装jdk111.2安装Maven 二.Docker安装Jenkins2.1安装Docker2.2 安装Jenkins2.3进入jenkins 三.Jenkins设置3.1安装jenkins插件3.2全局工具配置全局配置jdk全局配置maven全局配置git 3.3 系统配置安装 Publish Over SSH …...
PCL 点云数学形态学操作(腐蚀)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 基本原理:使用结构元素(通常为滤波的窗口)的窗口模板作为处理单元,利用形态学中的膨胀与腐蚀相组合即可达到滤波的效果。 点云数据中的数学形态学运算其实和二维图像上的运算非常相似,图像上像素有x,y和亮度值…...
【设计模式】【行为型模式】观察者模式(Observer)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 👍 欢迎点赞、收藏、关注,跟上我的更新节奏 🎵 当你的天空突…...
RAGFlow和Dify对比
RAGFlow和Dify都是基于大语言模型(LLM)的应用开发平台,具有相似的功能和应用场景,但它们在技术架构、部署要求和用户体验上存在一些差异。 RAGFlow和Dify对比 2025-02-13 22.08 RAGFlow 技术栈:RAGFlow…...
AI前端开发:蓬勃发展的机遇与挑战
人工智能(AI)领域的飞速发展,正深刻地改变着我们的生活方式,也为技术人才,特别是AI代码生成领域的专业人士,带来了前所未有的机遇。而作为AI应用与用户之间桥梁的前端开发,其重要性更是日益凸显…...
结构型模式---代理模式
概念 代理模式是一种结构型模式,主要用于在客户端和接口之间添加一个中间层,用于在客户端和接口之间进行权限控制或者其他的中间层操作。 使用场景 1、延缓初始化,当我们偶尔需要使用一个重量级的服务对象,如果一直保持该对象的…...
Java面向对象一:相关概念
面向过程&面向对象 面向过程思想 步骤清晰简单,第一步做什么,第二步做什么… 面对过程适合处理一些较为简单的问题面向对象思想 物以类聚,分类的思维模式,思考问题首先会解决问题需要哪些分类,然后对这些分类进行…...
CEF132 编译指南 MacOS 篇 - depot_tools 安装与配置 (四)
1. 引言 在 CEF132(Chromium Embedded Framework)的编译过程中,depot_tools 扮演着举足轻重的角色。这套由 Chromium 项目精心打造的脚本和工具集,专门用于获取、管理和更新 Chromium 及其相关项目(包括 CEFÿ…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...
