当前位置: 首页 > news >正文

当 LSTM 遇上 ARIMA!!

大家好,我是小青

ARIMA 和 LSTM 是两种常用于时间序列预测的模型,各有优劣。

ARIMA 擅长捕捉线性关系,而 LSTM 擅长处理非线性和长时间依赖的关系。将ARIMA 和 LSTM 融合,可以充分发挥它们各自的优势,构建更强大的时间序列预测模型。

ARIMA 算法

ARIMA 是一种经典的时间序列预测方法,适用于捕捉时间序列数据中的线性趋势和季节性模式。

它通过整合自回归 (AR)、差分 (I)、移动平均 (MA) 三部分,建模时间序列数据中的依赖关系。

以下是将 ARIMA 算法和 LSTM 算法进行融合,实现对时间序列预测的完整示例代码。

首先导入必要的库,并生成时间序列数据。

import numpy as np
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
import matplotlib.pyplot as plt# 生成模拟时间序列数据(正弦波 + 随机噪声)
np.random.seed(42)
time = np.arange(0, 100, 0.1)
data = np.sin(time) + 0.5 * np.random.normal(size=len(time))# 数据分割
train_size = int(len(data) * 0.8)
train_data, test_data = data[:train_size], data[train_size:]# 可视化数据
plt.plot(data, label='Original Data')
plt.axvline(train_size, color='red', linestyle='--', label='Train/Test Split')
plt.legend()
plt.show()

图片

接下来,使用 ARIMA 算法捕捉时间序列数据中的线性成分。

# 使用 ARIMA 模型拟合训练数据
arima_model = ARIMA(train_data, order=(5, 1, 0))  # 设置 p, d, q 参数
arima_result = arima_model.fit()# 生成 ARIMA 的预测值
arima_pred_train = arima_result.predict(start=1, end=len(train_data)-1)
arima_residuals = train_data[1:] - arima_pred_train  # 提取残差

然后,使用 LSTM 捕捉非线性残差。

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
arima_residuals_scaled = scaler.fit_transform(arima_residuals.reshape(-1, 1))# 构建 LSTM 的输入特征
def create_lstm_dataset(data, time_steps=10):X, y = [], []for i in range(len(data) - time_steps):X.append(data[i:i+time_steps])y.append(data[i+time_steps])return np.array(X), np.array(y)time_steps = 10
X_train, y_train = create_lstm_dataset(arima_residuals_scaled, time_steps)# 定义 LSTM 模型
lstm_model = Sequential([LSTM(50, activation='relu', input_shape=(time_steps, 1)),Dense(1)
])# 编译 LSTM 模型
lstm_model.compile(optimizer='adam', loss='mse')# 训练 LSTM 模型
lstm_model.fit(X_train, y_train, epochs=20, batch_size=32, verbose=1)

融合预测

# 使用 ARIMA 对测试数据预测
arima_pred_test = arima_result.predict(start=len(train_data), end=len(data)-1)# 准备 LSTM 的输入
test_residuals = test_data - arima_pred_test
test_residuals_scaled = scaler.transform(test_residuals.reshape(-1, 1))X_test, _ = create_lstm_dataset(test_residuals_scaled, time_steps)# 使用 LSTM 对残差进行预测
lstm_pred = lstm_model.predict(X_test)
lstm_pred = scaler.inverse_transform(lstm_pred)# 融合预测结果
final_pred = arima_pred_test[time_steps:] + lstm_pred.flatten()# 可视化预测结果
plt.plot(test_data[time_steps:], label='True Values')
plt.plot(final_pred, label='ARIMA + LSTM Prediction')
plt.legend()
plt.show()

图片

相关文章:

当 LSTM 遇上 ARIMA!!

大家好,我是小青 ARIMA 和 LSTM 是两种常用于时间序列预测的模型,各有优劣。 ARIMA 擅长捕捉线性关系,而 LSTM 擅长处理非线性和长时间依赖的关系。将ARIMA 和 LSTM 融合,可以充分发挥它们各自的优势,构建更强大的时…...

kali连接xshell

1.先保证宿主机:以太网适配器 VMware Network Adapter VMnet8 和kali(net 模式)在同一个网段 windows VMnet8开启 查看是否是自动获取ip ipv4 和ipv6一样的 查看 windows VMnet8的IPv4的地址 查看 kali 的IP地址 window ping的结果&#xf…...

图像曲率滤波

看到这么一个非常有意思的东西,记录一下 https://www.zhihu.com/question/35499791 https://zhuanlan.zhihu.com/p/22971865 GCFilter_talk.pdf_免费高速下载|百度网盘-分享无限制 https://github.com/YuanhaoGong/CurvatureFilter?tabreadme-ov-file...

TCP 和 UDP 可以绑定相同的端口吗?

前言 当一个网络接口接收到一个数据报时,IP 模块首先检查目的地址是否为自己的 IP 地址,如果是的话,数据报交付给由 IPv4 头部的协议字段指定的协议模块。 TCP 和 UDP 在内核中是两个完全独立的模块,送给 TCP/UDP 模块的报文根据…...

【Python网络爬虫】爬取网站图片实战

【Python网络爬虫】爬取网站图片实战 Scrapying Images on Website in Action By Jackson@ML *声明:本文简要介绍如何利用Python爬取网站数据图片,仅供学习交流。如涉及敏感图片或者违禁事项,请注意规避;笔者不承担相关责任。 1. 创建Python项目 1) 获取和安装最新版…...

2024年博客之星年度评选—创作影响力评审+主题文章创作评审目前排名(2024博客之星陪跑小分队助力2024博客之星创作者成长)

2024年博客之星年度评选—创作影响力评审主题文章创作评审目前排名 2024年博客之星主题文章创作评审文章得分公布!2024年博客之星创作影响力评审2024年博客之星主题文章创作评审目前排名公布! 【2024博客之星】恭喜完成✅主题创作的226位博主&#xff0…...

【CLIP系列】4:目标检测(ViLD、GLIP)

目录 1 ViLD2 GLIP2.1 前言2.2 损失计算2.3 模型框架 1 ViLD OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION 从标题就能看出来,作者是把CLIP模型当成一个Teacher,去蒸馏他自己的网络,从而能Zero Shot去…...

Qt Designer菜鸟使用教程(实现一个本地英文翻译软件)

1 安装Qt Designer 安装这个包的时候会自带安装 Qt Designer, 安装目录为python的安装根目录的 Lib/site-packages/qt5_applications/Qt/bin 目录下。 pip install pyqt5-tools2 新建窗体 2.1 新建主窗体 创建之后如下图: 设置主窗口大小: 设置窗…...

【一文读懂】HTTP与Websocket协议

HTTP协议 概述 HTTP (Hypertext Transfer Protocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏…...

大语言模型入门

大语言模型入门 1 大语言模型步骤1.1 pre-training 预训练1.1.1 从网上爬数据1.1.2 tokenization1.1.2.1 tokenization using byte pair encoding 1.3 预训练1.3.1 context1.3.2 training1.3.3 输出 1.2 post-training1.2.1 token 1.2 SFT监督微调1.3 人类反馈强化学习1.3.1 人…...

SQL 大厂面试题目(由浅入深)

今天给大家带来一份大厂SQL面试覆盖:基础语法 → 复杂查询 → 性能优化 → 架构设计,大家需深入理解执行原理并熟悉实际业务场景的解决方案。 1. 基础查询与过滤 题目:查询 employees 表中所有薪资(salary)大于 10000…...

Shader Step和frac函数

Step又称为阶跃函数,在着色器(Shader)编程中,step 函数是一个非常有用的函数,尤其是在GLSL(OpenGL Shading Language)和其他类似的着色器语言中。它用于生成基于阈值的阶跃函数输出。step 函数的…...

FreeRtos实时系统: 十二.FreeRTOS的队列集

FreeRtos实时系统: 十二.FreeRTOS的队列集 一.队列集简介二.队列集相关API函数三.队列集操作实验 一.队列集简介 左边的接收任务会在没接收到队列时会阻塞,如果前面释放信号量这时该任务也获取不到信号量。 右边使用队列集如果获取到,判断句柄是谁&#…...

NLP Word Embeddings

Word representation One-hot形式 在上一周介绍RNN类模型时,使用了One-hot向量来表示单词的方式。它的缺点是将每个单词视为独立的,算法很难学习到单词之间的关系。 比如下面的例子,即使语言模型已经知道orange juice是常用组合词&#xf…...

如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B

如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B 一、背景二、解决方案三、操作步骤1.下载模型2.安装依赖3.量化4.生成推理代码5.运行A.缓存上限为128条B.不限制缓存上限C.输出内容 一、背景 随着深度学习的不断发展,大型语言模型(LLM,L…...

2025年二级建造师报名流程图解

2025年二级建造师报名时间!附报名流程! ⏰️已公布25年二建考试时间的省份如下: ️4月19日、20日考试的城市有:贵州 ️5月10日、11日考试的城市有:湖北、陕西、宁夏、甘肃、福建、浙江、江西、黑龙江、河南、湖南、…...

深入浅出:Python 中的异步编程与协程

引言 大家好,今天我们来聊聊 异步编程 和 协程,这是近年来编程语言领域中的热点话题之一,尤其在 Python 中,它作为一种全新的编程模型,已经成为处理 IO密集型 任务的强力工具。尽管很多人对异步编程望而却步&#xff0…...

八大排序——简单选择排序

目录 1.1基本操作: 1.2动态图: 1.3代码: 代码解释 1. main 方法 2. selectSort 方法 示例运行过程 初始数组 每轮排序后的数组 最终排序结果 代码总结 1.1基本操作: 选择排序(select sorting)也…...

vue使用CSS布局技术,实现div定位到页面底部或顶部并居中功能

<template> <div > <div class"bottom-element"> 我在底部&#xff0c;并居中了 </div> </div> </template> 使用CSS布局技术&#xff0c;通过设置CSS属性来实现页面底部定位。 <style lang"scs…...

Jenkins 部署 之 Mac 一

Jenkins 部署 之 Mac 一 一.Jenkins 部署依赖 JDK 环境 查看 Mac JDK 环境&#xff0c;如果没有安装&#xff0c;先安装 打开终端输入命令:java -version Mac安装配置 JDK 二. 检查 HomeBrew 安装 检查 HomeBrew 是否安装&#xff0c;终端输入命令:brew -v Mac安装HomeB…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

云原生安全实战:API网关Envoy的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口&#xff0c;负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...