当前位置: 首页 > news >正文

【CLIP系列】4:目标检测(ViLD、GLIP)

目录

  • 1 ViLD
  • 2 GLIP
    • 2.1 前言
    • 2.2 损失计算
    • 2.3 模型框架

1 ViLD

OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION

从标题就能看出来,作者是把CLIP模型当成一个Teacher,去蒸馏他自己的网络,从而能Zero Shot去做目标检测。

现在的目标检测数据集标注的类别都很有限,这些有限的类别叫做base categories,如下图中的蓝框标注的东西都是玩具,在这种数据集上去训练一个目标检测器就只能检测出玩具,得不到更细致的检测结果。我们能不能在现有数据集的基础之上,不去额外标注这些黄鸭子或者绿鳄鱼,但模型能直接做到检测这些物体的能力,换句话说,就是模型应该有用能检测这种novel categories新类别的能力。

研究动机

主体的方法如下图所示,

  • a是Base方法,实际上是一个Mask RCNN,是一个两阶段的分类器,第一阶段会出一些region proposal,也就是图中的输入 N proposals;第二阶段就是把N个proposals经过Detection Head,得到N个region embeddings,然后再经过一些分类头,最后输出这些Bounding Box到底是什么类,这样就完成了目标检测。目标函数一般包括两个:定位和分类。
  • b是ViLD的text部分,N个proposals经过检测头,经过投射和正则等操作之后,得到N个region embeddings。接下来我们要去算文本的embedding,就是把物体的类别拿过来给一些prompt,生成一个句子,经过文本编码器即可。ViLD-text和Base方法一样,也是在这些数据集上做有监督的训练,而且是在基础类上训练。在这个阶段,ViLD-text只是把图像的特征和文本的特征联系到一起,Zero Shot能力还有待加强。需要注意的是,不在基础类里的其他类别,都归到Background背景类。背景类的学习非常关键,专门有一个背景的embedding,需要在模型训练的时候去把它学好。
  • c是ViLD的image部分,对于得到的M个bounding box,可以把它们抠出来并resize成特定大小例如224*224,这样就可以输入到CLIP预训练好的图像编码器,得到图像的特征,当做Teacher。Student网络就是常用的目标检测的框架,M个proposals经过一些层得到的图像特征,我们希望它们和CLIP的特征尽可能地接近,所以直接用一个简单的L1-Loss去做蒸馏就可以了。这里的监督信号不再是人工标注,而是CLIP的图像编码,所以不在受到基础类的限制了。ViLD-image通过利用CLIP模型,大大地加强了Open Vocabulary的能力。这里取M个而不是N个proposals,主要是CLIP抽取特征太慢了,因此需要减少proposal的数量来加速训练。
  • d是ViLD-text和ViLD-image合体,右边蒸馏部分只有在训练的时候用到,测试的时候没有用到。

方法

模型总览图如下图所示:

模型总览图

2 GLIP

2.1 前言

目标检测和分割一样,标注数据集都很贵,对于边边角角的类和层出不穷的新类,我们没有办法训练一个模型把这些都检测的很好。我们只能依赖于Open-vocabulary的目标检测模型,来把这些corner case都处理的很好。

而如果想训练一个很强的Open-vocabulary的目标检测模型,就只能像CLIP一样,可以利用上亿规模的的数据集,而且还要把图片-文本对应关系和定位都学的很好。那么 重点就是使用图片-文本对数据集的高效使用 ,因为很好收集。

Vision Language任务(图片-文本多模态任务)里有一类定位任务Vision grounding,主要就是根据文本定位出图片中对应的物体(短语定位phrase grounding),这与目标检测任务非常类似,都是去图中找目标物体的位置。

GLIP 的文章的出发点,就是将检测问题转换为短语定位(phrase grounding)问题,这样GLIP 模型就统一了目标检测和定位两个任务,可以使用更多的数据集。再配合伪标签的技术来扩增数据,使得训练的数据量达到了前所未有的规模(3M人工标注数据和24M图文对数据)。最后训练出来的模型GLIP-L,直接以 zero-shot 的方式在COCO 和LVIS 上进行推理,mAP分别达到了 49.8 和26.9,可见其性能非常的强。

GLIP = Detection + Phrase Grounding:给定一张图片和一个文本,根据这个文本把物体找出来。

效果展示:

效果图

2.2 损失计算

目标检测的损失函数由分类损失和定位损失组成。对于目标检测和Vision grounding而言,定位部分都差不多,二者的区别主要在于如何计算分类loss。因为 detection的标签是one-hot的类别单词,而Vision grounding的标签是一个句子。所以需要把二者的分类loss统一到一个框架下面,也就是:L = Lcls + Lloc.

detection 分类损失计算公式:

detection

vision grounding分类损失计算:

grounding

2.3 模型框架

模型总览图如下图所示,由于所有数据集都是有标注的,所以模型是以有监督的方式进行训练。计算得到文本特征与图像特征的相似度之后,直接与 GT box计算对齐损失alignment loss即可(和ViLD-text分支一样)。这样就完成了文本和图像的特征融合,就可以进行zero-shot检测了。而定位损失也是直接与GT box计算L1 损失。

模型中间的融合层(Deep Fusion)和LSeg的做法一样,都是为了使图像特征和文本特征进一步交互,使最终的图像-文本联合特征空间(joined embedding space)训练得更好(相似的embedding拉近,不相似的拉远),图像特征和文本特征被训练的更强更有关联性,这样后面计算相似度矩阵的效果肯定就更好。

Deep Fusion层实际上是Cross Attention,也可以用其他的网络结构替代。

总览图

相关文章:

【CLIP系列】4:目标检测(ViLD、GLIP)

目录 1 ViLD2 GLIP2.1 前言2.2 损失计算2.3 模型框架 1 ViLD OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION 从标题就能看出来,作者是把CLIP模型当成一个Teacher,去蒸馏他自己的网络,从而能Zero Shot去…...

Qt Designer菜鸟使用教程(实现一个本地英文翻译软件)

1 安装Qt Designer 安装这个包的时候会自带安装 Qt Designer, 安装目录为python的安装根目录的 Lib/site-packages/qt5_applications/Qt/bin 目录下。 pip install pyqt5-tools2 新建窗体 2.1 新建主窗体 创建之后如下图: 设置主窗口大小: 设置窗…...

【一文读懂】HTTP与Websocket协议

HTTP协议 概述 HTTP (Hypertext Transfer Protocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏…...

大语言模型入门

大语言模型入门 1 大语言模型步骤1.1 pre-training 预训练1.1.1 从网上爬数据1.1.2 tokenization1.1.2.1 tokenization using byte pair encoding 1.3 预训练1.3.1 context1.3.2 training1.3.3 输出 1.2 post-training1.2.1 token 1.2 SFT监督微调1.3 人类反馈强化学习1.3.1 人…...

SQL 大厂面试题目(由浅入深)

今天给大家带来一份大厂SQL面试覆盖:基础语法 → 复杂查询 → 性能优化 → 架构设计,大家需深入理解执行原理并熟悉实际业务场景的解决方案。 1. 基础查询与过滤 题目:查询 employees 表中所有薪资(salary)大于 10000…...

Shader Step和frac函数

Step又称为阶跃函数,在着色器(Shader)编程中,step 函数是一个非常有用的函数,尤其是在GLSL(OpenGL Shading Language)和其他类似的着色器语言中。它用于生成基于阈值的阶跃函数输出。step 函数的…...

FreeRtos实时系统: 十二.FreeRTOS的队列集

FreeRtos实时系统: 十二.FreeRTOS的队列集 一.队列集简介二.队列集相关API函数三.队列集操作实验 一.队列集简介 左边的接收任务会在没接收到队列时会阻塞,如果前面释放信号量这时该任务也获取不到信号量。 右边使用队列集如果获取到,判断句柄是谁&#…...

NLP Word Embeddings

Word representation One-hot形式 在上一周介绍RNN类模型时,使用了One-hot向量来表示单词的方式。它的缺点是将每个单词视为独立的,算法很难学习到单词之间的关系。 比如下面的例子,即使语言模型已经知道orange juice是常用组合词&#xf…...

如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B

如何在24GB的GPU上运行DeepSeek-R1-Distill-Qwen-32B 一、背景二、解决方案三、操作步骤1.下载模型2.安装依赖3.量化4.生成推理代码5.运行A.缓存上限为128条B.不限制缓存上限C.输出内容 一、背景 随着深度学习的不断发展,大型语言模型(LLM,L…...

2025年二级建造师报名流程图解

2025年二级建造师报名时间!附报名流程! ⏰️已公布25年二建考试时间的省份如下: ️4月19日、20日考试的城市有:贵州 ️5月10日、11日考试的城市有:湖北、陕西、宁夏、甘肃、福建、浙江、江西、黑龙江、河南、湖南、…...

深入浅出:Python 中的异步编程与协程

引言 大家好,今天我们来聊聊 异步编程 和 协程,这是近年来编程语言领域中的热点话题之一,尤其在 Python 中,它作为一种全新的编程模型,已经成为处理 IO密集型 任务的强力工具。尽管很多人对异步编程望而却步&#xff0…...

八大排序——简单选择排序

目录 1.1基本操作: 1.2动态图: 1.3代码: 代码解释 1. main 方法 2. selectSort 方法 示例运行过程 初始数组 每轮排序后的数组 最终排序结果 代码总结 1.1基本操作: 选择排序(select sorting)也…...

vue使用CSS布局技术,实现div定位到页面底部或顶部并居中功能

<template> <div > <div class"bottom-element"> 我在底部&#xff0c;并居中了 </div> </div> </template> 使用CSS布局技术&#xff0c;通过设置CSS属性来实现页面底部定位。 <style lang"scs…...

Jenkins 部署 之 Mac 一

Jenkins 部署 之 Mac 一 一.Jenkins 部署依赖 JDK 环境 查看 Mac JDK 环境&#xff0c;如果没有安装&#xff0c;先安装 打开终端输入命令:java -version Mac安装配置 JDK 二. 检查 HomeBrew 安装 检查 HomeBrew 是否安装&#xff0c;终端输入命令:brew -v Mac安装HomeB…...

【FastAPI 使用FastAPI和uvicorn来同时运行HTTP和HTTPS的Python应用程序】

在本文中&#xff0c;我们将介绍如何使用 FastAPI和uvicorn来同时运行HTTP和HTTPS的 Python应用程序。 简介 FastAPI是一个高性能的Web框架&#xff0c;可以用于构建快速、可靠的API。它基于Python的类型提示和异步支持&#xff0c;使得开发者可以轻松地编写出安全且高效的代…...

HCIA-路由器相关知识和面试问题

二、 路由器 2.1 关于路由器的知识 2.1.1 什么是路由器 路由器是一种网络层互联设备&#xff0c;主要用于连接多个逻辑上分开的网络&#xff0c;实现不同网络之间的数据路由和通信。它能根据网络层地址&#xff08;如 IP 地址&#xff09;来转发数据包&#xff0c;在网络中起…...

Docker+Jenkins自动化部署SpringBoot项目【详解git,jdk,maven,ssh配置等各种配置,附有示例+代码】

文章目录 DockerJenkins部署SpringBoot项目一.准备工作1.1安装jdk111.2安装Maven 二.Docker安装Jenkins2.1安装Docker2.2 安装Jenkins2.3进入jenkins 三.Jenkins设置3.1安装jenkins插件3.2全局工具配置全局配置jdk全局配置maven全局配置git 3.3 系统配置安装 Publish Over SSH …...

PCL 点云数学形态学操作(腐蚀)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 基本原理:使用结构元素(通常为滤波的窗口)的窗口模板作为处理单元,利用形态学中的膨胀与腐蚀相组合即可达到滤波的效果。 点云数据中的数学形态学运算其实和二维图像上的运算非常相似,图像上像素有x,y和亮度值…...

【设计模式】【行为型模式】观察者模式(Observer)

&#x1f44b;hi&#xff0c;我不是一名外包公司的员工&#xff0c;也不会偷吃茶水间的零食&#xff0c;我的梦想是能写高端CRUD &#x1f525; 2025本人正在沉淀中… 博客更新速度 &#x1f44d; 欢迎点赞、收藏、关注&#xff0c;跟上我的更新节奏 &#x1f3b5; 当你的天空突…...

RAGFlow和Dify对比

‌ RAGFlow和Dify都是基于大语言模型&#xff08;LLM&#xff09;的应用开发平台&#xff0c;具有相似的功能和应用场景&#xff0c;但它们在技术架构、部署要求和用户体验上存在一些差异。‌‌ RAGFlow和Dify对比 2025-02-13 22.08 RAGFlow‌ ‌技术栈‌&#xff1a;RAGFlow…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...