Chrome插件开发流程
Chrome插件开发流程可以分为以下几个主要步骤:
### 1. 确定插件功能和目标
在开始开发之前,首先需要明确插件的功能和目标。这包括:
- **功能定义**:确定插件要解决的问题或提供的功能。
- **市场分析**:了解目标用户群体和市场需求。
- **设计功能列表**:列出插件的主要功能和特性。
### 2. 创建项目结构
创建一个项目文件夹,并在其中组织必要的文件和目录:
- **项目根目录**:例如 `my-plugin`。
- **manifest.json**:插件的配置文件,定义插件的基本信息和权限。
- **popup.html**:弹出窗口的HTML文件。
- **background.js**:后台脚本,处理逻辑和事件。
- **content.js**:内容脚本,与网页内容交互。
- **CSS文件**:用于美化界面。
### 3. 编写manifest.json文件
`manifest.json` 是插件的核心配置文件,包含以下内容:
- **名称(name)** :插件的显示名称。
- **版本(version)** :插件的版本号。
- **描述(description)** :插件的简短描述。
- **图标(icons)** :插件的图标文件。
- **权限(permissions)** :插件需要访问的浏览器功能。
- **背景脚本(background)** :后台脚本的路径。
- **内容脚本(content_scripts)** :内容脚本的路径和匹配规则。
- **弹出窗口(popup)** :弹出窗口的HTML文件路径。
### 4. 设计用户界面
如果插件需要用户界面,可以创建 `popup.html` 文件:
- 使用HTML定义界面结构。
- 使用CSS美化界面样式。
- 使用JavaScript实现交互逻辑。
### 5. 开发插件功能
根据插件的功能需求,编写相应的代码:
- **背景脚本(background.js)** :处理后台逻辑,如事件监听、定时任务等。
- **内容脚本(content.js)** :与网页内容交互,操作DOM或发送消息到背景脚本。
- **HTML和CSS**:实现用户界面的布局和样式。
### 6. 测试和调试
在开发过程中,使用Chrome开发者工具进行测试和调试:
- **加载扩展程序**:通过Chrome浏览器的扩展程序页面加载已解压的插件文件。
- **调试工具**:使用开发者工具检查代码错误,调试逻辑问题。
### 7. 打包和发布
完成开发后,将插件打包并发布:
- **打包插件**:使用命令行工具将插件文件压缩成 `.crx` 文件。
- **注册开发者账号**:在Chrome Web Store注册开发者账号并支付费用。
- **提交审核**:将插件提交到Chrome Web Store进行审核。
- **发布插件**:审核通过后,插件正式上线。
### 8. 维护和更新
发布后,持续维护和更新插件:
- **收集反馈**:通过用户反馈改进插件功能。
- **修复bug**:及时修复发现的bug。
- **添加新功能**:根据用户需求和市场变化添加新功能。
### 9. 学习和进阶
为了进一步提升插件开发能力,可以学习以下内容:
- **Chrome API**:深入学习Chrome提供的API,实现更复杂的功能。
- **多语言支持**:使用Chrome Native Messaging实现跨平台通信。
- **自动化测试**:编写自动化测试代码,提高代码质量和稳定性。
通过以上步骤,开发者可以逐步掌握Chrome插件的开发流程,并创建出功能强大、用户体验良好的插件。希望这些信息对你有所帮助!
相关文章:

Chrome插件开发流程
Chrome插件开发流程可以分为以下几个主要步骤: ### 1. 确定插件功能和目标 在开始开发之前,首先需要明确插件的功能和目标。这包括: - **功能定义**:确定插件要解决的问题或提供的功能。 - **市场分析**:了解目标用户群…...

物联网行业通识:从入门到深度解析
物联网行业通识:从入门到深度解析 (图1:物联网生态示意图) 一、引言:万物互联时代的到来 根据IDC最新预测,到2025年全球物联网设备连接数将突破410亿,市场规模达1.1万亿美元。物联网ÿ…...
【做一个微信小程序】校园事件页面实现
前言 为了进一步扩展校园事件页面的功能,我们可以添加 搜索、分类筛选 和 渐变卡片色 等特性。以下是详细的方案和源码实现。 扩展功能设计 1. 搜索功能 在页面顶部添加搜索框,用户输入关键词后,筛选出匹配的事件。2. 分类筛选 在页面顶部添加分类标签(如“全部”、“活动…...

C++基础系列【14】继承与多态
博主介绍:程序喵大人 35- 资深C/C/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C20高级编程》《C23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末👇…...

DeepSeek-R1 大模型本地部署指南
文章目录 一、系统要求硬件要求软件环境 二、部署流程1. 环境准备2. 模型获取3. 推理代码配置4. 启动推理服务 三、优化方案1. 显存优化技术2. 性能加速方案 四、部署验证健康检查脚本预期输出特征 五、常见问题解决1. CUDA内存不足2. 分词器警告处理3. 多GPU部署 六、安全合规…...

在conda环境下,安装Pytorch和CUDA
系统 : Ubuntu20.04 显卡:NVIDIA GTX1650 显卡驱动已经装好(命令 nvidia-smi 查看显卡配置) (主要看一下第一行的参数,最大支持的CUDA版本为12.4 ) Aanconda 版本(安装指南)(似乎…...

Java里int和Integer的区别?
大家好,我是锋哥。今天分享关于【Java里int和Integer的区别?】面试题。希望对大家有帮助; Java里int和Integer的区别? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Java 中,int 和 Integer 都是用来表…...

【第13章:自监督学习与少样本学习—13.4 自监督学习与少样本学习的未来研究方向与挑战】
凌晨三点的实验室里,博士生小张盯着屏幕上的训练曲线——他设计的跨模态少样本学习模型在医疗影像诊断任务上突然出现了诡异的性能断崖。前一秒还在92%的准确率高位运行,下一秒就暴跌到47%。这个看似灾难性的现象,却意外揭开了自监督学习与少样本学习技术深藏的核心挑战… 一…...

【NLP】文本预处理
目录 一、文本处理的基本方法 1.1 分词 1.2 命名体实体识别 1.3 词性标注 二、文本张量的表示形式 2.1 one-hot编码 2.2 word2vec 模型 2.2.1 CBOW模式 2.2.2 skipgram模式 2.3 词嵌入word embedding 三、文本数据分析 3.1 标签数量分布 3.2 句子长度分布 3.3 词…...

deepseek r1从零搭建本地知识库10:嵌入模型和知识库建设
一、嵌入模型(Embedding Model)是什么? 1. 定义 嵌入模型是一种将文本、图像、音频等非结构化数据转化为**低维稠密向量(Dense Vector)**的算法模型,这些向量(通常几百到几千维)能够…...

Linux-文件IO
1.open函数 【1】基本概念和使用 #include <fcntl.h> int open(const char *pathname,int flags); int open(const char *pathname,int flags,mode_t mode); 功能: 打开或创建文件 参数: pathname //打开的文件名 f…...
3d pose 学习笔记2025
目录 champ nlf 3dpose 2025 55个关键点 推理代码: 要设置环境变量: 依赖项metrabs 渲染代码: tram4d 脚也不是特别好 GVHMR脚对不齐 推理代码: multiperson 2023年 genhmr还没开源: champ https://zhuanlan.zhihu.com/p/700326554 nlf 3dpose 2025 55个关键点…...

LC-随机链表的复制、排序链表、合并K个升序链表、LRU缓存
随机链表的复制 为了在 O(n) 时间复杂度内解决这个问题,并且使用 O(1) 的额外空间,可以利用以下技巧: 将新节点插入到原节点后面:我们可以将复制节点插入到原节点后面。例如,如果链表是 A -> B -> C,…...
静态页面在安卓端可以正常显示,但是在ios打开这个页面就需要刷新才能显示全图片
这个问题可能有几个原因导致,我来分析一下并给出解决方案: 首要问题是懒加载实现方式的兼容性问题。当前的懒加载实现可能在 iOS 上不够稳定。建议修改图片懒加载的实现方式: // 使用 Intersection Observer API 实现懒加载 function initLazyLoading() {const imageObserver…...
四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)【ESP32指向鼠标】
四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵) 在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。 四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器…...
JavaScript 内置对象-日期对象
在JavaScript中,处理日期和时间是一个常见的需求。无论是显示当前时间、计算两个日期之间的差异,还是格式化日期字符串,Date 对象都能提供强大的支持。本文将详细介绍 Date 对象的使用方法,包括创建日期实例、获取和设置日期值、以…...

本地大模型编程实战(19)RAG(Retrieval Augmented Generation,检索增强生成)(3)
文章目录 准备创建矢量数据库对象创建 LangGraph 链将检索步骤转化为工具定义节点构建图 见证效果qwen2.5llama3.1MFDoom/deepseek-r1-tool-calling:7b 总结代码参考 上一篇文章我们演练了一个 用 langgraph 实现的 RAG(Retrieval Augmented Generation,检索增强生成) 系统。本…...
DeepSeek与ChatGPT:AI语言模型的全面对决
DeepSeek与ChatGPT:AI语言模型的全面对决 引言:AI 语言模型的时代浪潮一、认识 DeepSeek 与 ChatGPT(一)DeepSeek:国产新星的崛起(二)ChatGPT:AI 界的开拓者 二、DeepSeek 与 ChatGP…...
2024年年终总结
2024年终于过去了,这绝对是我人生中最惨痛的一年!被小人欺骗、被庸人耽误、被自己蠢到!不由的让我想起了22年那次算命,算命先生说我十年低谷期,如果从15年进创业公司开始,24年是最后一年,果然应…...
利用 Valgrind 检测 C++ 内存泄露
Valgrind 是一款运行在 Linux 系统上的编程工具集,主要用于调试和分析程序的性能、内存使用等问题。其中最常用的工具是 Memcheck,它可以帮助检测 C 和 C 程序中的内存管理错误,如内存泄漏、使用未初始化的内存、越界访问等。 安装 这里我以…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...