当前位置: 首页 > news >正文

JVM中的线程池详解:原理→实践

一、为什么需要线程池?

        在多线程编程中,频繁地创建和销毁线程会带来显著的性能开销。

        想象一下,如果你经营一家西餐厅,每次有顾客到来你都雇佣新的服务员,顾客吃完结账后就解雇——这种模式是不是非常效率低下且成本高昂啊,并且还可能会被人说成是傻子。

        线程池就像一支固定下来的服务员团队,能高效复用线程资源。

线程池的核心优势

  • 降低资源消耗:复用已创建的线程,避免频繁创建销毁

  • 提高响应速度:任务到达时可直接使用空闲线程

  • 增强可管理性:统一监控和调优线程使用情况

  • 防止资源耗尽:通过队列机制控制并发数量

二、JVM内存模型与线程池的关系

1. 线程私有区域

  • 程序计数器:每个线程独立记录执行位置

  • 虚拟机栈:存储线程方法调用的栈帧

  • 本地方法栈:Native方法调用使用

2. 线程共享区域

  • :存放所有线程池中的任务对象

  • 方法区:存储线程池类的元数据信息

  • 直接内存:NIO操作可能使用的非堆内存

关键:线程池中的每个工作线程都拥有独立的虚拟机栈和程序计数器,而任务对象和线程池本身存储在中。既能保证线程安全,又可以实现资源共享。

三、Java线程池核心实现

1. ThreadPoolExecutor 核心参数

public ThreadPoolExecutor(int corePoolSize,      // 核心线程数int maximumPoolSize,   // 最大线程数long keepAliveTime,    // 空闲线程存活时间TimeUnit unit,         // 时间单位BlockingQueue<Runnable> workQueue, // 任务队列RejectedExecutionHandler handler  // 拒绝策略
)

2. 工作流程详解

  1. 提交任务时优先使用核心线程

  2. 核心线程忙时任务进入队列

  3. 队列满时创建非核心线程

  4. 达到最大线程数后触发拒绝策略

3. 四种拒绝策略对比

策略类处理方式适用场景
AbortPolicy直接抛出RejectedExecutionException严格要求任务不丢失
CallerRunsPolicy由提交任务的线程执行任务需要降级处理
DiscardPolicy静默丢弃新任务允许丢失部分任务
DiscardOldestPolicy丢弃队列最旧任务并重试优先处理新任务

四、线程池与JVM内存管理

1. 内存消耗分析

  • 每个线程消耗:约1MB栈内存(默认-Xss1M)

  • 典型问题场景

    // 危险示例:可能导致OOM
    Executors.newCachedThreadPool(); // 最大线程数=Integer.MAX_VALUE

2. 推荐创建方式

// 安全的手动创建方式
new ThreadPoolExecutor(5, // 核心线程数10, // 最大线程数60L, TimeUnit.SECONDS,new ArrayBlockingQueue<>(100), // 有界队列new CustomRejectionPolicy()
);

3. 内存优化建议

  • 设置合理的线程上限(通常不超过CPU核心数*2)

  • 使用有界队列避免内存溢出

  • 监控堆内存使用(特别是长期存活的线程对象)

五、线程池监控与调优

1. 关键监控指标

ThreadPoolExecutor pool = (ThreadPoolExecutor) executor;
System.out.println("活跃线程数: " + pool.getActiveCount());
System.out.println("已完成任务数: " + pool.getCompletedTaskCount());
System.out.println("队列大小: " + pool.getQueue().size());

2. 推荐工具

  • JConsole:可视化监控线程状态

  • VisualVM:分析线程堆栈信息

  • Arthas:实时诊断线上问题

3. 最佳实践

  • IO密集型任务:建议线程数 = CPU核心数 * (1 + 平均等待时间/计算时间)

  • CPU密集型任务:线程数 ≈ CPU核心数 + 1

  • 混合型任务:拆分不同线程池处理

六、常见问题排查

1. 线程泄漏

现象:线程数持续增长不释放
排查

  1. 检查是否忘记关闭线程池

  2. 分析线程堆栈(jstack命令)

  3. 确认任务是否存在无限阻塞

2. 内存溢出

可能原因

  • 使用无界队列导致任务堆积

  • 任务对象持有大内存引用

  • 线程本地变量未清理

解决方案

// 使用ScheduledThreadPoolExecutor进行内存监控
ScheduledExecutorService monitor = Executors.newScheduledThreadPool(1);
monitor.scheduleAtFixedRate(() -> {long usedMB = (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) / 1024 / 1024;System.out.println("内存使用: " + usedMB + "MB");
}, 0, 30, TimeUnit.SECONDS);

七、线程池生命周期管理

1. 状态流转图

2. 正确关闭方式

executor.shutdown(); // 平缓关闭
if(!executor.awaitTermination(60, TimeUnit.SECONDS)){executor.shutdownNow(); // 强制关闭
}

相关文章:

JVM中的线程池详解:原理→实践

一、为什么需要线程池&#xff1f; 在多线程编程中&#xff0c;频繁地创建和销毁线程会带来显著的性能开销。 想象一下&#xff0c;如果你经营一家西餐厅&#xff0c;每次有顾客到来你都雇佣新的服务员&#xff0c;顾客吃完结账后就解雇——这种模式是不是非常效率低下且成本高…...

SNARKs 和 UTXO链的未来

1. 引言 SNARKs 经常被视为“解决”扩容问题的灵丹妙药。虽然 SNARKs 可以提供令人难以置信的好处&#xff0c;但也需要承认其局限性——SNARKs 无法解决区块链目前面临的现有带宽限制。 本文旨在通过对 SNARKs 对比特币能做什么和不能做什么进行&#xff08;相对&#xff09…...

JavaScript设计模式 -- 外观模式

在实际开发中&#xff0c;往往会遇到多个子系统协同工作时&#xff0c;直接操作各个子系统不仅接口繁琐&#xff0c;还容易导致客户端与内部实现紧密耦合。**外观模式&#xff08;Facade Pattern&#xff09;**通过为多个子系统提供一个统一的高层接口&#xff0c;将复杂性隐藏…...

百达翡丽(Patek Philippe):瑞士制表的巅峰之作(中英双语)

百达翡丽&#xff08;Patek Philippe&#xff09;&#xff1a;瑞士制表的巅峰之作 在钟表界&#xff0c;百达翡丽&#xff08;Patek Philippe&#xff09; 一直被誉为“世界三大名表”之一&#xff0c;并且常被认为是其中的至高存在。一句“没人能真正拥有一枚百达翡丽&#x…...

阿里云一键部署DeepSeek-V3、DeepSeek-R1模型

目录 支持的模型列表 模型部署 模型调用 WebUI使用 在线调试 API调用 关于成本 FAQ 点击部署后服务长时间等待 服务部署成功后&#xff0c;调用API返回404 请求太长导致EAS网关超时 部署完成后&#xff0c;如何在EAS的在线调试页面调试 模型部署之后没有“联网搜索…...

分享一款AI绘画图片展示和分享的小程序

&#x1f3a8;奇绘图册 【开源】一款帮AI绘画爱好者维护绘图作品的小程序 查看Demo 反馈 github 文章目录 前言一、奇绘图册是什么&#xff1f;二、项目全景三、预览体验3.1 截图示例3.2 在线体验 四、功能介绍4.1 小程序4.2 服务端 五、安装部署5.1 快速开始~~5.2 手动部…...

【练习】【双指针】力扣热题100 283. 移动零

题目 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0] 示例 2: 输入: nums [0] 输出…...

QT 互斥锁

一、概述 1、在多线程编程中&#xff0c;为了防止多个线程同时访问共享资源而导致的不确定性和错误&#xff0c;经常会使用互斥锁&#xff08;Mutex&#xff09;进行保护。 2、QMutex是Qt提供的一个互斥锁类&#xff0c;用于确保在同一时间只有一个线程访问共享资源。 3、QM…...

什么是算法的空间复杂度和时间复杂度,分别怎么衡量。

1. 时间复杂度 时间复杂度衡量的是算法运行时间与输入规模之间的关系。它通常用大O记号&#xff08;Big O Notation&#xff09;表示&#xff0c;例如 O(1)、O(n)、O(n2) 等。 衡量方法&#xff1a; 常数时间复杂度 O(1)&#xff1a;无论输入规模如何&#xff0c;算法的执行时…...

VMware Workstation 17.0 Pro创建虚拟机并安装Ubuntu22.04与ubuntu20.04(双版本同时存在)《包含小问题总结》

目录 一、创建虚拟机 二、下载安装22.04 三、一些配置问题总结&#xff08;小屏&#xff0c;网络&#xff0c;复制贴贴等&#xff09; 1、网络问题 2、sudo apt install net-tools出现无法定为软件包 3、小屏与ubuntu虚拟机与windows系统之间复制粘贴 4、安装终端:Termi…...

Windows 10 ARM工控主板CAN总线实时性能测试

在常规的Windows系统中支持CAN总线应用&#xff0c;需要外接CAN总线适配器&#xff0c;通常为USB转CAN模块或PCI接口CAN卡。实时性本身是CAN总线的显著特性之一&#xff0c;但由于Windows并非实时操作系统&#xff0c;应用程序容易受到系统CPU负载影响&#xff0c;导致调度周期…...

如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型&#xff08;LLM&#xff09;原生不支持函数调用功能时&#xff0c;如何实现智能工具调度&#xff1f;本文通过自然语言解析结构化输出控制的方法来实现。 GitHub代码地址 核心实现步骤 定义工具函数 使用tool装饰器声明可调用工具&#xff1a; from langcha…...

【Linux AnolisOS】关于Docker的一系列问题。尤其是拉取东西时的网络问题,镜像源问题。

AnolisOS 8中使用Docker部署&#xff08;全&#xff09;_anolis安装docker-CSDN博客 从在虚拟机安装龙蜥到安装docker上面这篇文章写的很清晰了&#xff0c;我重点讲述我解决文章里面问题一些的方法。 问题1&#xff1a; docker: Get https://registry-1.docker.io/v2/: net/h…...

【Elasticsearch】Mapping概述

以下是Elasticsearch中提到的关于Mapping的各模块概述&#xff1a; --- 1.Dynamic mapping&#xff08;动态映射&#xff09; 动态映射是指Elasticsearch在索引文档时&#xff0c;自动检测字段类型并创建字段映射的过程。当你首次索引一个文档时&#xff0c;Elasticsearch会根…...

GPT-4o悄然升级:能力与个性双突破,AI竞技场再掀波澜

在大模型竞技场中&#xff0c;GPT-4o悄悄发布了全新版本&#xff0c;凭借其卓越的多项能力&#xff0c;迅速超越了DeepSeek-R1&#xff0c;成功登上并列第一的位置。这次更新不仅在数学&#xff08;第6名&#xff09;上有所突破&#xff0c;还在创意写作、编程、指令遵循、长文…...

如何选择合适的超参数来训练Bert和TextCNN模型?

选择合适的超参数来训练Bert和TextCNN模型是一个复杂但关键的过程&#xff0c;它会显著影响模型的性能。以下是一些常见的超参数以及选择它们的方法&#xff1a; 1. 与数据处理相关的超参数 最大序列长度&#xff08;max_length&#xff09; 含义&#xff1a;指输入到Bert模…...

C# SpinLock 类 使用详解

总目录 前言 SpinLock 是 C# 中一种轻量级的自旋锁&#xff0c;属于 System.Threading 命名空间&#xff0c;专为极短时间锁竞争的高性能场景设计。它通过忙等待&#xff08;自旋&#xff09;而非阻塞线程来减少上下文切换开销&#xff0c;适用于锁持有时间极短&#xff08;如…...

【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题

【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题 【承接商业广告,如需商业合作请+v17740568442】 文章目录 【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题问题描述:解决方法方法一:手动中断并重启下载方法二:使用 Bash 脚本自动化下载在…...

机器学习所需要的数学知识【01】

总览 导数 行列式 偏导数 概理论 凸优化-梯度下降 kkt条件...

4.【线性代数】——矩阵的LU分解

四 矩阵的LU分解 1. AB的逆矩阵2. 转置矩阵3. ALU3.1 2x2矩阵3.2 3x3矩阵3.3 nxn的矩阵分解的次数&#xff1f; 1. AB的逆矩阵 { ( A B ) ( B − 1 A − 1 ) I ( B − 1 A − 1 ) ( A B ) I ⇒ ( A B ) − 1 B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) I\\ (B^{-1}A^…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...