langchain系列 - FewShotPromptTemplate 少量示例
导读
环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3
背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain
时间:20250220
说明:技术梳理,针对FewShotPromptTemplate专门来写一篇博客
概念说明
few-shot最初来源于机器学习的概念,还有one-shot、zero-shot概念,概念如下:
机器学习中的概念
Zero-Shot学习
在训练集中没有某个类别的样本,但在测试集中出现了这个类别。我们需要模型在训练过程中,即使没有接触过这个类别的样本,但仍然可以通过对这个类别的描述,对没见过的类别进行分类。
One-Shot学习
可以理解为用一条数据fine-tune模型。例如,在人脸识别场景里,你只提供一张照片,门禁就能认识各个角度的你。属于Few-Shot学习的特例。
Few-Shot学习
在模型训练过程中,如果每个类别只有少量样本(一个或几个),研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习。
LangChain中的概念
zero-shot
仅通过提示词即可实现模型正确回答
one-shot
通过一个示例和提示词模型正确回答
few-shot
通过少量(大于1)示例和提示词模型正确回答
参数说明
examples
Optional[list[dict]] = None
示例格式化到提示词中,应提供examples 或 example_selector。
example_selector
Optional[BaseExampleSelector] = None
ExampleSelector 选择要格式化到提示符中的示例,应提供examples 或 example_selector。
validate_template
bool = False
是否尝试验证模板。
example_prompt
PromptTemplate
PromptTemplate 用于格式化单个示例。"
suffix
str
要放在示例后面的提示模板字符串。
example_separator
str = "\n\n"
用于连接前缀、示例和后缀的字符串分隔符。
prefix
str = ""
要放在示例前面的提示模板字符串。
template_format
Literal["f-string", "jinja2"] = "f-string"
提示模板的格式。选项包括:'f-string', 'jinja2'。
代码实战
使用少量示例的prompt和大模型实现分类的功能
from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)print(prompt.invoke("下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛").to_string())# 输出
你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。
下面是一些示例:Question: 下面两个动物是同一种类吗?
1:拉布拉多
2:哈士奇
是Question: 下面两个动物是同一种类吗?
1:草鱼
2:鲸鱼
不是Question: 下面两种动物是同一种类吗?
1:波斯猫
2:英国短毛
显然,promptvalue将提示词按照规则整合在一起了,并将用户提问放在最后
下面看下配置大模型后运行结果
from langchain_core.prompts import PromptTemplate, FewShotPromptTemplate
from langchain_openai import ChatOpenAI# 示例
examples = [{"question": "下面两个动物是同一种类吗?\n1:拉布拉多\n2:哈士奇","answer": "是"},{"question": "下面两个动物是同一种类吗?\n1:草鱼\n2:鲸鱼","answer": "不是"}
]# 示例提示
example_prompt = PromptTemplate(template="Question: {question}\n{answer}")# 整合后的提示词的前缀
prefix = "你是一个生物学家,判断用户提问的动物种类回答,就判断为同一种类, 回答'是',反之回答'不是'。\n下面是一些示例:"# 整合后的提示词的前缀
suffix = "Question: {input}"# 通过FewShotPromptTemplate整合提示词
prompt = FewShotPromptTemplate(prefix=prefix,examples=examples,example_prompt=example_prompt,suffix=suffix,# input_variables=["input"] # 可省略
)
# 大模型信息
# translate_llm = ChatOpenAI(base_url="https://llm.xxx.xxxx.com/v1/",openai_api_key="sk-xxxxxxxxxx",model_name="qwen2.5-instruct")translate_llm = ChatOpenAI(**llm_info)
translate_llm = prompt | translate_llminput5 = "下面两种动物是同一种类吗?\n1:波斯猫\n2:英国短毛"response = translate_llm.invoke(input5)
print(response.content)# 输出
是注:虽然波斯猫和英国短毛猫是两种不同的猫品种,但它们同属于家猫(Felis catus),因此可认为是同一种类。
结束
相关文章:
langchain系列 - FewShotPromptTemplate 少量示例
导读 环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3 背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain 时间:20250220 说明:技术梳理,针对FewShotP…...
详细介绍下软件生命周期的各个阶段以及常见的软件生命周期模型
软件生命周期(Software Life Cycle)是指软件从需求分析到最终退役的整个过程。通常,软件生命周期可以划分为以下几个主要阶段: 一、软件生命周期的主要阶段 需求分析(Requirements Analysis) 与客户沟通&am…...
重构谷粒商城07:Git一小时快速起飞指南
重构谷粒商城07:Git一小时快速起飞指南 前言:这个系列将使用最前沿的cursor作为辅助编程工具,来快速开发一些基础的编程项目。目的是为了在真实项目中,帮助初级程序员快速进阶,以最快的速度,效率ÿ…...
设计模式教程:命令模式(Command Pattern)
1. 什么是命令模式? 命令模式(Command Pattern)是一种行为型设计模式。它将请求封装成一个对象,从而使你能够用不同的请求、队列和日志请求以及支持可撤销操作。 简单来说,命令模式通过把请求封装成对象的方式解耦了…...
Qt中使用QPdfWriter类结合QPainter类绘制并输出PDF文件
一.类的介绍 1.QPdfWriter介绍 Qt中提供了一个直接可以处理PDF的类,这就是QPdfWriter类。 (1)PDF文件生成 支持创建新的PDF文件或覆盖已有文件,通过构造函数直接绑定文件路径或QFile对象; 默认生成矢量图形PDF&#…...
Android开发-深入解析Android中的AIDL及其应用场景
深入解析 Android 中的 AIDL 及其应用场景 1. 前言2. AIDL 的核心概念3. AIDL 的实现步骤3.1. 定义 AIDL 接口文件3.2. 实现服务端(Service)3.3. 客户端绑定与调用 4. AIDL 的典型应用场景4.1. 多进程应用4.2. 与系统服务交互4.3. 高性能 IPC4.4. 跨应用…...
RT-Thread+STM32L475VET6实现红外遥控实验
文章目录 前言一、板载资源介绍二、具体步骤1. 确定红外接收头引脚编号2. 下载infrared软件包3. 配置infrared软件包4. 打开STM32CubeMX进行相关配置4.1 使用外部高速时钟,并修改时钟树4.2 打开定时器16(定时器根据自己需求调整)4.3 打开串口4.4 生成工程 5. 打开HW…...
【机器学习】衡量线性回归算法最好的指标:R Squared
衡量线性回归算法最好的指标:R Squared 一、摘要二、回归算法评价指标与R Squared指标介绍三、R Squared的编程实践 一、摘要 本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared(R方)。R方用于比较模型预测结果与实际结…...
设计模式-Java
一、创建型模式 1. 单例模式 定义 确保一个类只有一个实例,并提供一个全局访问点。 实现方式 饿汉式(线程安全,但可能浪费资源) public class Singleton {// 静态变量,类加载时初始化private static final Singlet…...
代码讲解系列-CV(五)——语义分割基础
文章目录 一、图像分割标注1.1 Labelme标注1.2 SAM辅助1.3 json格式 二、数据解析2.1 Dataset2.2 train.py2.2.1 取参2.2.2 分割和数据集的读取 三、Unet网络搭建3.1 Unet3.2 Network 四、损失函数和指标4.1 DICE系数4.2 损失函数4.3 半精度训练 五、SAM六、作业 语义分割是图片…...
在mfc中使用自定义三维向量类和计算多个三维向量的平均值
先添加一个普通类, Vector3.h, // Vector3.h: interface for the Vector3 class. // //#if !defined(AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_) #define AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_#if _MSC_VER > 1000 #p…...
RDMA ibverbs_API功能说明
设备管理 获取当前活动网卡 返回当前rdma设备列表 struct ibv_device **ibv_get_device_list(int *num_devices);//使用 struct ibv_device **dev_list ibv_get_device_list(NULL);获取网卡名 返回网卡名字字符串:如"mlx5_0",一般通过网卡…...
【C++语言】string 类
一、为什么要学习 string 类 C语言中,字符串是以 “\0” 结尾的一些字符的集合,为了操作方便,C标准库中提供了一些 str 系列的库函数,但是这些库函数与字符串是分离开的,不太符合 OOP 的思想,而且底层空间需…...
快速上手gdb/cgdb
Linux调试器-gdb使用 1.背景2.调试原理、技巧命令2.1指令2.2 本质2.3 技巧 1.背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g…...
《养生》(二)
一、基础生活调整 1.作息规律 固定每天7-8小时睡眠,尽量22:30前入睡,晨起后拉开窗帘晒太阳5分钟,调节生物钟 2.饮食优化 三餐定时,每餐细嚼慢咽20次以上,优先吃蔬菜和蛋白质(如鸡蛋、豆腐&#x…...
JAVA:集成 Drools 业务规则引擎的技术指南
1、简述 Drools 是一个强大的业务规则引擎,适用于需要动态决策或规则管理的场景。它允许开发人员将业务逻辑与应用代码分离,使得业务人员可以通过规则文件维护和更新规则,而无需修改应用代码。本文将介绍 Drools 的基本概念、配置方式&#…...
GeoHD - 一种用于智慧城市热点探测的Python工具箱
GeoHD - 一种用于智慧城市热点探测的Python工具箱 详细原理请参考:Yan, Y., Quan, W., Wang, H., 2024. A data‐driven adaptive geospatial hotspot detection approach in smart cities. Trans. GIS tgis.13137. 代码下载:下载 1. 简介 在城市数据…...
记一次Ngnix配置
记一次Ngnix配置 配置Ngnix配置防火墙 假设一个服务器中有一个公网IP、一个内网IP,另外已经部署好后台服务的接口地址为http://内网ip:8088。 配置Ngnix 找到Ngnix的配置文件,通过在Ngnix的安装路径下的 \conf\nginx.conf 文件。 worker_processes 1;…...
2024年国赛高教杯数学建模C题农作物的种植策略解题全过程文档及程序
2024年国赛高教杯数学建模 C题 农作物的种植策略 原题再现 根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略&…...
java基础语知识(8)
类之间的关系 在类之间,最常见的关系有: 依赖(“uses-a”);聚合(“has-a”);继承(“is-a”)。 依赖:一种使用关系,即一个类的实现需要另一个类的协助&#x…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
