当前位置: 首页 > news >正文

自动化办公|xlwings生成图表

在日常的数据分析和报告生成中,Excel图表是一个非常重要的工具。它能够帮助我们直观地展示数据,发现数据中的规律和趋势。然而,手动创建和调整图表往往耗时且容易出错。幸运的是,借助Python的xlwings库,我们可以自动化这些操作,极大地提高工作效率。

本文将详细介绍如何使用xlwings库在Excel中创建各种类型的图表(如柱状图、折线图、饼图等),并设置图表标题、坐标轴、图例,以及修改图表数据源。

1. 创建Excel工作簿和图表

1.1 创建Excel工作簿

在开始创建图表之前,我们需要先创建一个Excel工作簿,并添加一些数据。以下是一个简单的示例:

import xlwings as xw# 创建一个新的Excel工作簿
wb = xw.Book()
sheet = wb.sheets['Sheet1']# 添加数据
sheet.range('A1').value = ['Category', 'Value']
sheet.range('A2').value = [['A', 10], ['B', 20], ['C', 30], ['D', 40]]

2.2 创建柱状图

接下来,我们可以使用xlwings创建一个柱状图。以下代码展示了如何创建一个简单的柱状图:

# 创建柱状图
chart = sheet.charts.add()
chart.set_source_data(sheet.range('A1').expand())
chart.chart_type = 'column_clustered'
chart.top = sheet.range('F2').top
chart.left = sheet.range('F2').left

2.3 创建折线图

类似地,我们可以创建一个折线图:

# 创建折线图
chart = sheet.charts.add()
chart.set_source_data(sheet.range('A1').expand())
chart.chart_type = 'line'
chart.top = sheet.range('F2').top
chart.left = sheet.range('F2').left

2.4 创建饼图

创建饼图的代码如下:

# 创建饼图
chart = sheet.charts.add()
chart.set_source_data(sheet.range('A1').expand())
chart.chart_type = 'pie'
chart.top = sheet.range('F2').top
chart.left = sheet.range('F2').left

3. 设置图表标题、坐标轴、图例

3.1 设置图表标题

我们可以通过以下代码为图表设置标题:

chart.api[1].SetElement(2)  # 2表示标题位于图表上方
chart.api[1].ChartTitle.Text = "Sales Data"

3.2 设置坐标轴标题

设置坐标轴标题的代码如下:

chart.api[1].Axes(1).HasTitle = True
chart.api[1].Axes(1).AxisTitle.Text = "Category"chart.api[1].Axes(2).HasTitle = True
chart.api[1].Axes(2).AxisTitle.Text = "Value"

3.3 设置图例

我们可以通过以下代码设置图例的位置:

chart.api[1].SetElement(302)  # 302表示图例位于右侧

4. 修改图表数据源

在实际应用中,我们可能需要动态修改图表的数据源。以下代码展示了如何修改图表的数据源:

# 修改数据源
sheet.range('A2').value = [['A', 15], ['B', 25], ['C', 35], ['D', 45]]
chart.set_source_data(sheet.range('A1').expand())

5. 保存工作簿

最后,别忘了保存你的工作:

wb.save('chart_example.xlsx')
wb.close()

结论

通过xlwings库,我们可以轻松地在Excel中创建和操作各种类型的图表。无论是柱状图、折线图还是饼图,xlwings都提供了简单易用的接口。此外,我们还可以通过代码动态设置图表标题、坐标轴、图例,以及修改图表数据源,极大地提高了数据分析和报告生成的效率。

相关文章:

自动化办公|xlwings生成图表

在日常的数据分析和报告生成中,Excel图表是一个非常重要的工具。它能够帮助我们直观地展示数据,发现数据中的规律和趋势。然而,手动创建和调整图表往往耗时且容易出错。幸运的是,借助Python的xlwings库,我们可以自动化…...

大模型知识蒸馏技术(5)——在线蒸馏

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl1. 在线蒸馏概述 在线蒸馏是一种知识蒸馏方式,其核心特点是教师模型和学生模型的参数在训练过程中同时更新,整个蒸馏框架是端到端训练的。这种方式允许教师模型和学生模型相互影响、共同学习,能…...

Java 条件语句

Java 条件语句概述 条件语句通过判断给定条件的真假来控制程序的执行。本小节将详细介绍 Java 中各类条件语句。 1. if 语句 1.1 语法 用于根据给定条件决定是否执行一段代码。if 块仅在关联的布尔表达式为 true 时执行。 if (条件) {// 当条件成立时执行此处代码 }大括号…...

用JMeter给要登录的操作做压力测试

压力测试的http请求路径如下图 应当添加http Header Manager,设置登录凭证...

算法的数学基础

组合数 从n个不同元素中取出m(m≤n)个不同元素的所有组合的个数:C(n, m) n! / [m!(n - m)!]n个物品所有可能的组合数(不考虑组合的大小m):Σ C(n, m) C(n, 0) C(n, 1) C(n, 2) … C(n, n) 2 n 2^n 2…...

flowable适配达梦数据库

文章目录 适配相关问题无法从数据库产品名称“DM DBMS”中推断数据库类型分析解决 构建ibatis SqlSessionFactory时出错:inStream参数为null分析解决 liquibase相关问题问题一:不支持的数据库 Error executing SQL call current_schema: 无法解析的成员访…...

VScode C语言学习开发环境;运行提示“#Include错误,无法打开源文件stdio.h”

C/C环境配置 参考: VS Code 配置 C/C 编程运行环境(保姆级教程)_vscode配置c环境-CSDN博客 基本步骤 - 安装MinGW-W64,其包含 GCC 编译器:bin目录添加到环境变量;CMD 中输入gcc --version或where gcc验证…...

DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地

对于个人开发者或尝鲜者而言,本地想要部署 DeepSeek 有很多种方案,但是一旦涉及到企业级部署,则步骤将会繁琐很多。 比如我们的第一步就需要先根据实际业务场景评估出我们到底需要部署什么规格的模型,以及我们所要部署的模型&…...

自制简单的图片查看器(python)

图片格式:支持常见的图片格式(JPG、PNG、BMP、GIF)。 import os import tkinter as tk from tkinter import filedialog, messagebox from PIL import Image, ImageTkclass ImageViewer:def __init__(self, root):self.root rootself.root.…...

RD-搭建测试环境

测试团队职责 环境验证:确保开发部署的测试环境可访问,页面/接口无阻塞问题; 配置检查**:核对数据库连接、接口域名、HT证书等关键配置; 数据准备**:导入基线数据,隔离测试与生产数据&#xff1…...

从零搭建微服务项目Base(第5章——SpringBoot项目LogBack日志配置+Feign使用)

前言: 本章主要在原有项目上添加了日志配置,对SpringBoot默认的logback的配置进行了自定义修改,并详细阐述了xml文件配置要点(只对日志配置感兴趣的小伙伴可选择直接跳到第三节),并使用Feign代替原有RestT…...

【深度学习】使用飞桨paddle实现波士顿房价预测任务

使用飞桨实现波士顿房价预测任务 由于开始学习深度学习,因此每次开始都熟悉一下深度学习模型的基本步骤: 在之前的学习中,我们学习了使用Python和NumPy实现波士顿房价预测任务的方法,本章我们将尝试使用飞桨paddle重写房价预测任…...

钉钉多维表:数据管理与协作的新篇章

在当今数字化时代,数据的高效管理和团队协作已成为企业竞争力的关键因素之一。钉钉多维表,作为一款基于钉钉平台的数据协作管理工具,正以其独特的功能和优势,引领着数据管理与协作的新潮流。本文将为您全面解析钉钉多维表的定义、特点、功能亮点、应用场景以及如何使用,让您轻松…...

高级推理的多样化推理与验证

25年2月来自波士顿大学、NotBadMath.AI、谷歌、哥伦比亚大学、MIT、Intuit公司和斯坦福大学的论文“Diverse Inference and Verification for Advanced Reasoning”。 OpenAI o1、o3 和 DeepSeek R1 等推理 LLM 在数学和编码方面取得重大进展,但仍发现 IMO 组合问题…...

深入理解 MySQL 8 C++ 源码:SELECT MOD(MONTH(NOW()), 2) 的函数执行过程

MySQL 作为最流行的关系型数据库之一,其内部实现机制一直是开发者探索的热点。本文将以一条简单的 SQL 查询 SELECT MOD(MONTH(NOW()), 2) 为例,深入分析 MySQL 8 源码中内置函数 MOD、MONTH 和 NOW 的执行过程,揭示其底层实现逻辑。 一、SQL…...

【算法系列】leetcode1419 数青蛙 --模拟

一、题目 二、思路 模拟⻘蛙的叫声。 当遇到 r o a k 这四个字符的时候,我们要去看看每⼀个字符对应的前驱字符,有没有⻘蛙叫出来。如果有⻘蛙叫出来,那就让这个⻘蛙接下来喊出来这个字符;如果没有则为异常字符串,直接…...

蓝桥杯 Java B 组之背包问题、最长递增子序列(LIS)

Day 4:背包问题、最长递增子序列(LIS) 📖 一、动态规划(Dynamic Programming)简介 动态规划是一种通过将复杂问题分解成更小的子问题来解决问题的算法设计思想。它主要用于解决具有最优子结构和重叠子问题…...

Git如何将一个分支的内容同步到另一个分支

在 Git 中,可以通过多种方法将一个分支的内容同步到另一个分支。以下是几种常用的方法: 1. 使用 merge 命令 这是最常见的方法,将一个分支的更改合并到另一个分支。 # 切换到目标分支 git checkout target-branch# 合并源分支的内容 git m…...

[C#]C# winform部署yolov12目标检测的onnx模型

yolov12官方框架:github.com/sunsmarterjie/yolov12 【测试环境】 vs2019 netframework4.7.2 opencvsharp4.8.0 onnxruntime1.16.3 【效果展示】 【调用代码】 using System; using System.Collections.Generic; using System.ComponentModel; using System.…...

51c大模型~合集69

我自己的原文哦~ https://blog.51cto.com/whaosoft/12221979 #7项基于SAM万物分割模型研究工作 1、CC-SAM: SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation #ECCV2024 #SAM #图像分割 #医学图像 Segment Anything Model (SAM) 在自…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

GitHub 趋势日报 (2025年06月08日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...