当前位置: 首页 > news >正文

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告

题目:Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统

一、研究背景与意义

随着旅游业的快速发展,民宿作为一种新兴的住宿形式,因其独特的魅力和个性化的服务,受到了越来越多游客的青睐。然而,随着民宿数量的快速增长,如何高效地管理和分析民宿数据,为游客提供个性化的推荐服务,成为当前亟待解决的问题。

大数据技术,尤其是Hadoop和Spark等分布式处理框架的出现,为民宿数据的处理和分析提供了强大的技术支持。同时,DeepSeek-R1大模型的应用,可以进一步提升推荐系统的智能化和准确性。因此,本研究旨在开发一款基于Hadoop、Spark和DeepSeek-R1大模型的民宿推荐系统,旨在通过大数据和人工智能技术,对民宿数据进行深度挖掘和分析,为用户提供个性化的推荐服务。

本研究的意义在于:

  1. 提升用户体验:通过个性化的推荐服务,帮助游客快速找到符合需求的民宿,提升旅游体验。
  2. 优化民宿经营:为民宿经营者提供有效的数据分析工具,帮助他们更好地了解消费者需求,优化服务质量和提高运营效率。
  3. 推动民宿行业发展:通过大数据和人工智能技术的应用,推动民宿行业的数字化转型和可持续发展。

二、国内外研究现状

  1. 国外研究现状

国外民宿行业起步较早,对民宿推荐系统的研究也相对成熟。国外学者主要集中在推荐算法、用户画像构建等方面,通过深入研究消费者选择民宿的动机和偏好,为民宿经营者提供了市场定位和营销策略的参考。同时,国外也涌现出了一批优秀的民宿推荐系统,如Airbnb的推荐算法等。

  1. 国内研究现状

相较于国外,我国对民宿业的研究起步较晚,但近年来研究成果逐渐丰富。国内研究者主要关注民宿业的发展现状、问题及对策,以及民宿服务质量评价体系的构建等方面。在民宿推荐系统方面,国内也进行了一些探索和实践,但整体上仍处于起步阶段,与国外的差距较大。

三、研究内容与方法

  1. 研究内容

本研究将围绕以下几个方面展开:

  • 数据收集与预处理:利用Python编写爬虫程序,从民宿租赁网站抓取数据,并进行数据清洗和预处理。
  • 数据存储与管理:利用Hadoop的HDFS和Hive进行数据存储和管理,确保数据的安全性和可扩展性。
  • 数据分析与挖掘:使用MapReduce和Spark进行数据的清洗、去重、统计等操作,并利用Hive进行数据分析,提取用户特征和民宿信息。
  • 推荐算法研究:结合用户画像和民宿信息,采用协同过滤、深度学习等推荐算法生成推荐列表。同时,引入DeepSeek-R1大模型进行智能推荐。
  • 系统设计与实现:设计并实现民宿推荐系统的功能模块,包括用户管理、民宿信息管理、推荐算法模块等,并进行系统测试和优化。
  1. 研究方法

本研究将采用以下研究方法:

  • 文献综述法:查阅相关文献,了解民宿推荐系统的研究现状和发展趋势,为本研究提供理论支持。
  • 实证分析法:收集大量民宿数据,运用统计学方法对数据进行实证分析,揭示其发展规律和趋势。
  • 实验验证法:通过实验验证推荐算法的有效性和准确性,包括算法在不同数据集上的表现、推荐结果的准确性等指标。
  • 案例分析法:选取典型的民宿推荐案例进行深入剖析,提炼成功经验和教训,为本研究提供实践参考。

四、预期目标与成果

  1. 预期目标
  • 开发一款基于Hadoop、Spark和DeepSeek-R1大模型的民宿推荐系统。
  • 实现民宿数据的收集、存储、分析和推荐功能。
  • 为游客提供个性化的民宿推荐服务。
  • 为民宿经营者提供有效的数据分析工具。
  1. 预期成果
  • 发表相关学术论文,将研究成果整理成学术论文,在相关学术期刊或会议上发表。
  • 开发完成民宿推荐系统,并进行系统测试和优化,确保其稳定性和准确性。
  • 为民宿行业提供一套高效、智能的推荐解决方案,推动民宿行业的数字化转型和可持续发展。

五、研究计划与进度安排

本研究将分为以下六个阶段进行:

  1. 第一阶段(第1-2个月):进行文献综述和需求分析,明确研究目标和内容。
  2. 第二阶段(第3-4个月):进行数据收集与预处理,包括编写爬虫程序、数据清洗和存储等工作。
  3. 第三阶段(第5-6个月):进行数据分析与挖掘,使用MapReduce和Spark进行数据处理,利用Hive进行数据分析。
  4. 第四阶段(第7-8个月):研究并应用推荐算法,进行实验验证和结果分析。
  5. 第五阶段(第9-10个月):设计并实现民宿推荐系统的功能模块,进行系统测试和优化。
  6. 第六阶段(第11-12个月):撰写论文并准备答辩工作。

六、参考文献

(由于篇幅限制,具体参考文献在此省略,实际撰写时应列出所有引用的文献。)


以上是《Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统》的开题报告,通过本研究,我们期望能够为民宿行业提供一套高效、智能的推荐解决方案,推动民宿行业的数字化转型和可持续发展。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

相关文章:

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

【Java学习】抽象类与接口

面向对象系列四 一、抽象方法 二、抽象类 三、意义检查 1.抽象方法的意义 2.意义检查 体现 四、接口 1.级别层次 2.接口变量 3.意义 4.成员 成员变量: 成员方法: 一、抽象方法 没有方法体即没有任何实现的方法是抽象方法,只有在…...

SpringBoot中实现限流和熔断功能

我们将使用Java的ScheduledExecutorService来实现一个简单的令牌桶算法(Token Bucket Algorithm),并结合一个自定义的服务类来处理第三方API调用。 1. 创建限流器 首先,创建一个简单的限流器类: import java.util.concurrent.*;public class SimpleRateLimiter {...

61.旋转链表--字节跳动

你应该比你现在强得多 题目描述 给定单链表,要求返回向右移动K位后的新链表 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3]思路分析 计算链表的长度 计算实际需要移动的步数 找到新的头节点 断开链表并重新连接 完整代码 /*** Defini…...

verilog笔记

Verilog学习笔记(一)入门和基础语法BY电棍233 由于某些不可抗拒的因素和各种的特殊原因,主要是因为我是微电子专业的,我需要去学习一门名为verilog的硬件解释语言,由于我是在某西部地区的神秘大学上学,这所…...

c++中sleep是什么意思(不是Sleep() )

sleep 函数在 C 语言中用于暂停程序执行指定的秒数,语法为 sleep(unsigned int seconds)。当 seconds 为 0 时,函数立即返回,否则函数将使进程暂停指定的秒数,并返回实际暂停的时间。 sleep 函数在 C 中的含义 sleep 函数是 C 标…...

Uniapp 开发中遇到的坑与注意事项:全面指南

文章目录 1. 引言Uniapp 简介开发中的常见问题本文的目标与结构 2. 环境配置与项目初始化环境配置问题解决方案 项目初始化注意事项解决方案 常见错误与解决方案 3. 页面与组件开发页面生命周期注意事项示例代码 组件通信与复用注意事项示例代码 样式与布局问题注意事项示例代码…...

Dify安装教程:Linux系统本地化安装部署Dify详细教程

1. 本地部署 Dify 应用开发平台 环境:Ubuntu(24.10) docker-ce docker compose 安装 克隆 Dify 源代码至本地环境: git clone https://github.com/langgenius/dify.git 启动 Dify: cd dify/docker cp .env.example...

rtsp rtmp 跟 http 区别

SDP 一SDP介绍 1. SDP的核心功能 会话描述:定义会话的名称、创建者、时间范围、连接地址等全局信息。媒体协商:明确媒体流的类型(如音频、视频)、传输协议(如RTP/UDP)、编码格式(如H.264、Op…...

基于YOLO11深度学习的运动鞋品牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

物体识别系统(识别图片中的物体)

这是一个基于 PyTorch 和 PyQt5 的物体识别程序,使用 Faster R-CNN 模型来识别图片中的物体,并通过图形界面展示识别结果。 1.用户界面 主窗口:包含加载图片、识别、清除按钮,以及图片显示区域和结果展示区域。 图片显示&#…...

数据表的存储过程和函数介绍

文章目录 一、概述二、创建存储过程三、在创建过程中使用变量四、光标的使用五、流程控制的使用六、查看和删除存储过程 一、概述 存储过程和函数是在数据库中定义的一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句。存储过程和函数可…...

【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)

【DeepSeek背后的技术】系列博文: 第1篇:混合专家模型(MoE) 第2篇:大模型知识蒸馏(Knowledge Distillation) 第3篇:强化学习(Reinforcement Learning, RL) 第…...

【JavaWeb12】数据交换与异步请求:JSON与Ajax的绝妙搭配是否塑造了Web的交互革命?

文章目录 🌍一. 数据交换--JSON❄️1. JSON介绍❄️2. JSON 快速入门❄️3. JSON 对象和字符串对象转换❄️4. JSON 在 java 中使用❄️5. 代码演示 🌍二. 异步请求--Ajax❄️1. 基本介绍❄️2. JavaScript 原生 Ajax 请求❄️3. JQuery 的 Ajax 请求 &a…...

[特殊字符] 蓝桥杯 Java B 组 之位运算(异或性质、二进制操作)

Day 6:位运算(异或性质、二进制操作) 📖 一、位运算简介 位运算是计算机底层优化的重要手段,利用二进制操作可以大大提高运算速度。常见的位运算包括: 与(&):a &am…...

[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction

论文网址:[2401.10134] Spatial-Temporal Large Language Model for Traffic Prediction 论文代码:GitHub - ChenxiLiu-HNU/ST-LLM: Official implementation of the paper "Spatial-Temporal Large Language Model for Traffic Prediction" …...

LTO优化详解

嵌入式开发过程中的LTO优化是什么意思?能够用来解决什么问题?它都优化了哪些?仅开启LTO真的可以优化SIZE的问题吗? 请分别回答我刚才提到的问题? 嗯,用户问关于嵌入式开发中的LTO优化,我需要详细解释这个概…...

分布式事务三阶段协议

分布式事务的三阶段分别是准备阶段、预提交阶段和提交 / 回滚阶段,以下是详细介绍: 三阶段提交协议可以理解为两阶段提交协议的改良版,是在协调者和参与者中都引入超时机制,并且把两阶段提交协议的第一个阶段分成了两步: 询问&am…...

LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型

上篇文章记录了使用lora微调deepseek-7b,微调成功,但是微调llama3-8b显存爆炸,这次尝试使用qlora微调HQQ方式量化,微调更大参数体量的大语言模型,记录下来微调过程,仅供参考。 对过程不感兴趣的兄弟们可以直…...

常用高压缩率的视频容器格式,并进行大比例压缩

常用的高压缩率视频容器格式,包括*.mp4 、*.mkv、*.webM等。     容器格式本身并不直接决定压缩率,而是取决于容器中所使用的视频编码格式等因素。不过,在常见的视频容器格式中,一些容器在搭配特定编码格式时,通常能表现出较高的压缩效率,以下是相关介绍: 1 MKV格式 …...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

MMaDA: Multimodal Large Diffusion Language Models

CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...