当前位置: 首页 > news >正文

ai-financial-agent - 为金融投资打造的AI代理

探索人工智能在投资研究中的应用。本项目仅用于**教育**目的,不用于真实交易或投资。

作者声明:

本项目仅用于教育和研究目的。

  • 不用于真实交易或投资
  • 不提供任何保证或担保
  • 过去的表现并不代表未来的结果
  • Creator 对经济损失不承担任何责任
  • 咨询财务顾问进行投资决策

使用此软件,即表示您同意仅将其用于学习目的。

GitHub: https://github.com/virattt/ai-financial-agent

更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现 - 小众AI

主要功能

  • AI 金融代理

    • 此项目的产品化版本
    • 用于金融研究、股票分析等的聊天助手
    • 使用生成式 UI 显示股票价格、基本面等
  • 财务数据集 API

    • 访问实时和历史股票市场数据
    • 数据针对 AI 金融代理进行了优化
    • 30+ 年的财经数据,100% 的市场覆盖率
    • 文档可在此处获取

安装和使用

git clone https://github.com/virattt/ai-financial-agent.git
cd ai-financial-agent

如果您尚未安装 npm,请从此处安装它。

  1. 安装 pnpm(如果尚未安装):
npm install -g pnpm
  1. 安装依赖项:
pnpm install
  1. 设置环境变量:
# Create .env file for your API keys
cp .env.example .env

在 .env 文件中设置 API 密钥:

# Get your OpenAI API key from https://platform.openai.com/
OPENAI_API_KEY=your-openai-api-key# Get your Financial Datasets API key from https://financialdatasets.ai/
FINANCIAL_DATASETS_API_KEY=your-financial-datasets-api-key# Get your LangSmith API key from https://smith.langchain.com/
LANGCHAIN_API_KEY=your-langsmith-api-key
LANGCHAIN_TRACING_V2=true
LANGCHAIN_PROJECT=ai-financial-agent

重要提示:您不应提交您的文件,否则它会暴露机密,允许其他人控制对您的各种 OpenAI 和身份验证提供商帐户的访问。.env​

运行代理

完成上述步骤后,只需运行以下命令即可启动开发服务器:

pnpm dev

您的应用程序模板现在应该在 localhost:3000 上运行。

财务数据 API

此模板使用 Financial Datasets API 作为财务数据提供商。Financial Datasets API 专为 AI 金融代理和 LLM 设计。

Financial Datasets API 提供实时和历史股票市场数据,并覆盖过去 30 年 100% 的美国市场。

数据包括财务报表、股票价格、期权数据、内幕交易、机构所有权等等。您可以通过此处的文档了解有关 API 的更多信息。

**注意**:AAPL、GOOGL、MSFT、NVDA 和 TSLA 的数据是免费的。

如果您不想使用 Financial Datasets API,则可以通过修改几行代码轻松切换到其他数据提供商。

部署您自己的代理

您可以通过 Vercel 一键在生产环境中部署自己的 AI Financial Agent 版本:

部署

如果您想在生产环境中部署自己的 AI Financial Agent 版本,则需要将本地实例与您的 Vercel 和 GitHub 帐户链接。

  1. 安装 Vercel CLI:npm i -g vercel​
  2. 将本地实例与 Vercel 和 GitHub 帐户链接(创建目录):.vercelvercel link​
  3. 下载您的环境变量:vercel env pull​

相关文章:

ai-financial-agent - 为金融投资打造的AI代理

探索人工智能在投资研究中的应用。本项目仅用于**教育**目的,不用于真实交易或投资。 作者声明: 本项目仅用于教育和研究目的。 不用于真实交易或投资不提供任何保证或担保过去的表现并不代表未来的结果Creator 对经济损失不承担任何责任咨询财务顾问…...

学习路程三 数据加载及向量化

前序 之前简单粗暴将LangChain分了几块,现在就挨着了解学习每块内容。今天主要从文档这条路来看。 本地文档这一条链路,通过加载,分割,向量化,再存储数据库 ps:看到这里还想继续实操下去,可以…...

基于GWO灰狼优化的WSN网络最优节点部署算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 无线传感器网络(Wireless Sensor Network, WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是 WSN 的关键问…...

保姆级! 本地部署DeepSeek-R1大模型 安装Ollama Api 后,Postman本地调用 deepseek

要在Postman中访问Ollama API并调用DeepSeek模型,你需要遵循以下步骤。首先,确保你有一个有效的Ollama服务器实例运行中,并且DeepSeek模型已经被加载。 可以参考我的这篇博客 保姆级!使用Ollama本地部署DeepSeek-R1大模型 并java…...

架构对比分析

您提到的两种架构描述本质上遵循相同的分层设计理念,但存在差异的原因在于 视角不同 和 硬件平台特性。以下是详细解析: 一、架构对比分析 1. 逻辑分层(通用软件设计视角) 应用层(UI/用户交互)↓ 业务逻辑…...

【每日八股】Redis篇(二):数据结构

Redis 数据类型? 主要有 STRING、LIST、ZSET、SET 和 HASH。 STRING String 类型底层的数据结构实现主要是 SDS(简单动态字符串),其主要应用场景包括: 缓存对象:可以用 STRING 缓存整个对象的 JSON&…...

windows使用命令解压jar包,替换里面的文件。并重新打包成jar包,解决Failed to get nested archive for entry

有一个jar包,需要替换里面的文件,使用解压工具打开项目,然后找到对应的子包,再次打开,然后进行手工替换重新压缩成jar包后,发现启动服务报错Failed to get nested archive for entry。 使用下面的命令可实…...

2025电商与跨境贸易实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)

🚀 2025电商与跨境贸易实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)🚀 📚 目录 DeepSeek在电商与跨境贸易中的核心价值选品与市场分析:AI驱动的精准决策Listing优化与多语言营销:提升转化率的秘密物流与供应链管理:AI赋能的效率革命客户服务与私域运营:…...

驱动开发系列39 - Linux Graphics 3D 绘制流程(二)- 设置渲染管线

一:概述 Intel 的 Iris 驱动是 Mesa 中的 Gallium 驱动,主要用于 Intel Gen8+ GPU(Broadwell 及更新架构)。它负责与 i915 内核 DRM 驱动交互,并通过 Vulkan(ANV)、OpenGL(Iris Gallium)、或 OpenCL(Clover)来提供 3D 加速。在 Iris 驱动中,GPU Pipeline 设置 涉及…...

自动驾驶中planning为什么要把横纵向分开优化?

在自动驾驶系统中,将 横向(Lateral)规划 和 纵向(Longitudinal)规划 分开优化是一种常见的设计范式,其核心原理在于 解耦车辆运动控制的多维复杂性,同时兼顾 计算效率 和 安全性约束。以下从原理…...

Linux 命令大全完整版(06)

2. 系统设置命令 pwunconv 功能说明:关闭用户的投影密码。语法:pwunconv补充说明:执行 pwunconv 指令可以关闭用户投影密码,它会把密码从 shadow 文件内,重回存到 passwd 文件里。 rdate(receive date) 功能说明&a…...

第9章:LangChain结构化输出-示例2(数字提取服务)

如何使用LangChain4j框架创建和使用多种AI服务。它通过定义接口和注解,将自然语言处理任务(如情感分析、数字提取、日期提取、POJO提取等)封装为服务,并通过LangChain4j的AiServices动态生成这些服务的实现。 本章主要讲述基于Lan…...

每天五分钟深度学习pytorch:使用Inception模块搭建GoogLeNet模型

本文重点 前面我们学习了Incetption模块,它的作用类似于vgg块对于VGG网络模型一样,本文我们使用Inception搭建GoogLeNet网络,如果使用卷积层开始从头开始搭建GoogleNet,那么这样看起来会很不清晰,我们使用已经封装好的Inception来搭建GoogLeNet网络 关键点 关键点在于I…...

Ubuntu - Redis 安装、远程访问

参考教程: https://blog.csdn.net/houor/article/details/126672577 https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/install-redis-on-linux/ 查看是否安装 redis-cli --versionUbuntu 上安装 更新: sudo apt update …...

SpringBoot+Vue+微信小程序的猫咖小程序平台(程序+论文+讲解+安装+调试+售后)

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统介绍 在当下这个高速发展的时代,网络科技正以令人惊叹的速度不断迭代更新。从 5G …...

二分查找算法的全面解析C++

一、核心原理与特性 二分查找是一种**对数时间复杂度(O(log n))**的高效搜索算法46,需满足两个前提条件: 数据存储在连续内存空间(如数组)数据按升序/降序有序排列35 算法通过折半比较缩小搜索范围: 初始化左右边界…...

深度学习(5)-卷积神经网络

我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单…...

第9章:LangChain结构化输出-示例3(日期和时间提取服务)

如何使用LangChain4j框架创建和使用多种AI服务。它通过定义接口和注解,将自然语言处理任务(如情感分析、数字提取、日期提取、POJO提取等)封装为服务,并通过LangChain4j的AiServices动态生成这些服务的实现。 本章主要讲述基于LangChain调用大模型如何进行结构化输出的真实…...

解决Open WebU无法显示基于OpenAI API接口的推理内容的问题

解决方案 把reasoning content的东西移到content中来 并在reasoning时,手动加上标签。具体做法是截获第三方api返回的stream,并修改其中的内容,再移交给open webUI处理。 在backend\open_webui\routers\openai.py中 找到 generate_chat_com…...

AI颠覆蛋白质工程:ProMEP零样本预测突变效应

概述 在生命科学的“造物革命”中,蛋白质工程一直面临着“试错成本”与“设计效率”的双重挑战——传统方法依赖繁复的多序列比对(MSA)或耗时的实验室筛选,如同在浩瀚的蛋白质宇宙中盲选星辰。而今日,一项发表于《Cel…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...