Linus的基本命令
以下是一些常见的 Linux 命令:
一、文件和目录操作:
- ls:列出目录中的文件和子目录,常用参数有 -a (显示所有文件,包括隐藏文件)、 -l (显示详细信息)、 -h (以易读的方式显示文件大小)等。例如: ls -alh 。
- cd:切换当前工作目录,如 cd /home/user 切换到 /home/user 目录, cd.. 返回上一级目录。
- pwd:显示当前工作目录的路径。
- mkdir:创建新目录,可使用 -p 参数创建多级目录,例如 mkdir -p /dir1/dir2 。
- rm:删除文件或目录,使用 -r 参数递归删除目录, -f 参数强制删除,例如 rm -rf /dir 。
- rmdir:删除空目录。
- mv :移动文件或目录,也可用于重命名文件,例如 mv file1.txt file2.txt 将 file1.txt 重命名为 file2.txt 。
- cp:复制文件或目录,使用 -r 参数递归复制目录,例如 cp -r /dir1 /dir2 。
- cat:查看文件内容,如 cat file.txt 。
- less:分页查看文件内容,可使用各种快捷键进行操作,如空格键翻页、回车键换行等。
- head:显示文件的开头几行,默认显示前 10 行,可通过 -n 参数指定行数,例如 head -n 5 file.txt 。
- tail:显示文件的末尾几行,默认显示后 10 行,可通过 -n 参数指定行数,还可使用 -f 参数实时跟踪文件内容的变化,例如 tail -f log.txt 。
二、系统信息查看:
- uname:显示系统信息,如 uname -a 显示详细的系统信息。
- top:实时显示系统的进程和资源使用情况。
- htop: top命令的增强版,提供更友好的界面(可能需要安装)。
- free:显示系统的内存使用情况, free -h 以易读的格式显示。
- vmstat:显示系统的虚拟内存状态。
- df:显示文件系统的磁盘空间使用情况,df -h以人类可读的格式显示。
- du:查看目录或文件占用的磁盘空间,du -sh /path/to/dir显示指定目录的总占用空间。
- uptime:显示系统的运行时间和负载平均值。
三、文件查找和搜索:
- find:在指定目录下查找文件,可根据文件名、文件大小、文件类型等条件进行查找,例如find /home -name "*.txt" 在 /home目录下查找所有以 .txt 结尾的文件。
- grep:在文件中查找指定的字符串,常与管道符`|`一起使用,例如 cat file.txt | grep "keyword" 在 file.txt 文件中查找包含"keyword"的行。
四、权限管理:
- chmod:修改文件或目录的权限,如 chmod +x file.sh 给 file.sh 文件添加可执行权限。
- chown:修改文件或目录的所有者,例如chown user:group file.txt 将 file.txt 的所有者改为user,所属组改为group。
五、其他常用命令:
- ping:测试网络连接,如 ping www.example.com。
- ssh:用于远程登录到其他主机,如 ssh user@host 。
- scp:在本地和远程主机之间复制文件,例如scp file.txt user@host:/path/to/destination将本地的 file.txt 文件复制到远程主机的指定目录。
- tar:用于打包和解包文件,如tar -cvf archive.tar /dir 将 /dir 目录打包成 archive.tar 文件,tar -xvf archive.tar 解包 archive.tar 文件。
这只是一些常见的 Linux 命令,Linux 命令非常丰富,还有很多其他的命令和用法,可以根据具体需求进一步学习和探索。
相关文章:
Linus的基本命令
以下是一些常见的 Linux 命令: 一、文件和目录操作: - ls:列出目录中的文件和子目录,常用参数有 -a (显示所有文件,包括隐藏文件)、 -l (显示详细信息)、 -h ࿰…...
【Linux】缓冲区和文件系统
个人主页~ 缓冲区和文件系统 一、FILE结构1、fd2、缓冲区(一)有换行有return全部打印(二)无换行无return的C接口打印(三)无换行无return的系统调用接口打印(四)有换行无return的C接口…...
函数式编程:概念、特性与应用
1. 函数式编程简介 函数式编程,从名称上看就与函数紧密相关。它是一种我们常常使用却可能并未意识到的编程范式,关注代码的结构组织,强调一个纯粹但在实际中有些理想化的不可变世界,涉及数学、方程和副作用等概念,甚至…...
git中的merge和rebase的区别
在 Git 中,git merge 和 git rebase 都是用于整合分支变更的核心命令,但它们的实现方式和结果有本质区别。以下是两者的详细对比: 一、核心区别 特性git mergegit rebase历史记录保留分支拓扑,生成新的合并提交线性化历史&#x…...
【目标检测】目标检测中的数据增强终极指南:从原理到实战,用Python解锁模型性能提升密码(附YOLOv5实战代码)
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…...
uniapp在app下使用mqtt协议!!!支持vue3
什么?打包空白?分享一下我的解决方法! 第一步 找大师算过了,装4.1版本运气好! 所以根目录执行命令… npm install mqtt4.1.0第二步 自己封装一个mqtt文件方便后期开坛做法! // utils/mqtt.js import mqt…...
VMware虚拟机17.5.2版本下载与安装(详细图文教程包含安装包)
文章目录 前言一、vmware虚拟机下载二、vmware虚拟机安装教程三、vmware虚拟机许可证 前言 VMware Workstation Pro 17 功能强大,广受青睐。本教程将带你一步步完成它的安装,简单易上手,助你快速搭建使用环境。 一、vmware虚拟机下载 VMwar…...
如何加固织梦CMS安全,防webshell、防篡改、防劫持,提升DedeCMS漏洞防护能力
织梦系统(DedeCMS)是一款非常知名的CMS系统,因其功能强大、结构科学合理,深受广大用户喜欢。 虽然织梦CMS(DedeCMS)非常优秀,但是为了保障网站安全,我们还是需要做一些必要的防护措…...
STM32的HAL库开发---ADC采集内部温度传感器
一、STM32内部温度传感器简介 二、温度计算方法 F1系列: 从数据手册中可以找到V25和Avg_Slope F4、F7、H7系列只是标准值不同,自行查阅手册 三、实验简要 1、功能描述 通过ADC1通道16采集芯片内部温度传感器的电压,将电压值换算成温度后&…...
Linux 命令大全完整版(12)
Linux 命令大全 5. 文件管理命令 ln(link) 功能说明:连接文件或目录。语 法:ln [-bdfinsv][-S <字尾备份字符串>][-V <备份方式>][--help][--version][源文件或目录][目标文件或目录] 或 ln [-bdfinsv][-S <字尾备份字符串>][-V…...
Python - 代码片段分享 - Excel 数据实时写入方法
文章目录 前言注意事项工具 pandas1. 简介2. 安装方式3. 简单介绍几个api 实战片段 - 实时写入Excel文件结束语 要么出众,要么出局 前言 我们在爬虫采集过程中,总是将数据解析抓取后统一写入Excel表格文件,如果在解析数据出现问题容易出现数据…...
(七)趣学设计模式 之 适配器模式!
目录 一、 啥是适配器模式?二、 为什么要用适配器模式?三、 适配器模式的实现方式1. 类适配器模式(继承插座 👨👩👧👦)2. 对象适配器模式(插座转换器 🔌…...
DeepSeek 细节之 MoE
DeepSeek 细节之 MoE DeepSeek 团队通过引入 MoE(Mixture of Experts,混合专家) 机制,以“分而治之”的思想,在模型容量与推理成本之间找到了精妙的平衡点,其中的技术实现和细节值得剖思 Transformer 演变…...
【Linux-网络】从逻辑寻址到物理传输:解构IP协议与ARP协议的跨层协作
🎬 个人主页:谁在夜里看海. 📖 个人专栏:《C系列》《Linux系列》《算法系列》 ⛰️ 道阻且长,行则将至 目录 📚前言 📖 IP地址的组成 🔖IPv4 🔖IPv6 📚…...
毕业离校管理系统的开发与需求分析
在当今信息化的时代背景下,高校的毕业生离校管理工作也逐渐向数字化转型。为了提高工作效率,减少人为错误,增强信息透明度,毕业离校管理系统应运而生。该系统旨在为学校提供一个高效、准确的毕业生离校管理平台,从而提…...
【NLP 24、实践 ⑤ 计算Bert模型中的参数数量】
以前不甘心,总想争个对错,现在不会了 人心各有所愿,没有道理可讲 —— 25.1.18 计算Bert模型结构中的参数数量 BertModel.from_pretrained():用于从预训练模型目录或 Hugging Face 模型库加载 BERT 模型的权重及配置。 参数名称…...
一、Spring框架系统化学习路径
系统化的Spring框架学习路径 第1阶段:基础知识准备 Java基础 核心概念:面向对象、异常处理、集合框架、多线程等。JVM基础:内存模型、垃圾回收机制。 Maven或Gradle Maven:创建项目、依赖管理、生命周期。Gradle:基本…...
Midscene.js - AI驱动,轻松实现UI自动化
UI自动化测试一直是软件测试中的一项重要任务,而随着AI技术的快速发展,自动化测试的能力也在不断提升。如何让UI自动化更智能、精准、灵活?Midscene.js作为一款AI驱动的UI自动化测试工具,正逐步改变着传统自动化测试的面貌。你是不…...
(九)Mapbox GL JS 中 Marker 图层的使用详解
什么是 Marker? 在 Mapbox GL JS 中,Marker(标记) 是一个可视化元素,用于在地图上标记特定的地理位置。它可以是一个默认的图标、自定义的图像,或者任何 HTML 元素。Marker 不仅能显示位置,还能…...
2k1000LA 使能 nand.
背景 : 默认的 发货的镜像 确实 是识别不了 nand 的。 ------------------------------------------------------------------------------------------ 但是 我之前 已经写好了文档,因此 拷贝到线上。 1 首先我要使能这几个。 在menuconfig 中使能一下。...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
