当前位置: 首页 > news >正文

空间尺寸对迭代次数的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 )

( A, B )---4*30*2---( 1, 0 )( 0, 1 )

做4个训练集尺寸分别为3行3列,3行4列,4行3列和2行4列的网络。简写为3*3,3*4,4*3,2*4.  

保持这4个网络差值结构的形态一致,观察图片尺寸的变化对迭代次数的影响。

第一组

3*3A-B迭代次数3*4A-B迭代次数
0000*2*7-0*0*010096.6400000*2*7-0*0*010096.73
0100*2*7-0*0*010096.6400100*2*7-0*0*010096.73
1110*2*7-0*0*010096.6401110*2*7-0*0*010096.73
4*3A-B迭代次数2*4A-B迭代次数
0000*0*2*7-0*0*0*014571.3800102*7-0*07074.94
0000*0*2*7-0*0*0*014571.3801112*7-0*07074.94
0100*0*2*7-0*0*0*014571.38
1110*0*2*7-0*0*0*014571.38

 

3*3的迭代次数与3*4的迭代次数相同,2*4的最小而4*3的最大。

4*3>3*3=3*4>2*4。表明在差值结构一致的前提下,增加列对迭代次数没有影响,而增加行会使迭代次数变大。

第二组

3*3A-B迭代次数3*4A-B迭代次数
0000*3*3-0*0*023068.7500000*3*3-0*0*022997.26
0110*3*3-0*0*023068.7500110*3*3-0*0*022997.26
0110*3*3-0*0*023068.7500110*3*3-0*0*022997.26
4*3A-B迭代次数2*4A-B迭代次数
0000*3*3*0-0*0*0*030993.9900113*3-0*022693.3
0110*3*3*0-0*0*0*030993.9900113*3-0*022693.3
0110*3*3*0-0*0*0*030993.99
0000*3*3*0-0*0*0*030993.99

迭代次数的大小顺序为4*3>3*3=3*4>2*4,这个顺序与第一组一致,4*3,3*3和3*4的迭代次数是第一组的约2.2倍,而2*4的迭代次数是第一组的3.2倍。2*4的迭代次数增长的更快。

第三组

3*3A-B迭代次数3*4A-B迭代次数
0000*3*6-0*0*025780.6700000*6*12-0*0*025814.85
0110*3*6-0*0*025780.6701100*6*12-0*0*025814.85
1100*3*6-0*0*025780.6711000*6*12-0*0*025814.85
4*3A-B迭代次数2*4A-B迭代次数
0000*0*3*6-0*0*0*035068.6801106*12-0*024266.91
0000*0*3*6-0*0*0*035068.6811006*12-0*024266.91
0110*0*3*6-0*0*0*035068.68
1100*0*3*6-0*0*0*035068.68


这组的顺序依然是4*3>3*3=3*4>2*4其中3*3,3*4,4*3的迭代次数为第二组的约1.1倍,而2*4的迭代次数是第二组的1.06倍,所以这个迭代次数的变化趋势并不均匀。

第4组

3*3A-B迭代次数3*4A-B迭代次数
1004*4*3-0*0*030860.9801004*4*3-0*0*030802.33
1004*4*3-0*0*030860.9801004*4*3-0*0*030802.33
0114*4*3-0*0*030860.9800114*4*3-0*0*030802.33
4*3A-B迭代次数
0000*4*4*3-0*0*0*028928.27
1000*4*4*3-0*0*0*028928.27
1000*4*4*3-0*0*0*028928.27
0110*4*4*3-0*0*0*028928.27

第4组规律与前三组不同,4*3的迭代次数要小于3*3和3*4.

3*3

457

512

0.89258

3*4

3954

4096

0.96533

4*3

3855

4096

0.94116

在3*3的网络中共有512组不同的训练集,其中迭代次数比30860小的有457组,占89.3%, 其余两组的数据是96%,94%。

所以如果认为在差值结构不变的条件下增加列不改变迭代次数,增加行使迭代次数变大,尽管这里的统计并不完全但似乎暗示了,这个假设可以有效的覆盖这3个网络的大多数结构。

而且这一现象可以很容易的用质心的假设去理解,质心的高度显然不会随着列的增加而增加,但是行的增加虽然不会改变质心的绝对高度但相对高度变小了。因为相对质心变小使迭代次数变大。

相关文章:

空间尺寸对迭代次数的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) ( A, B )---4*30*2---( 1, 0 )( 0, 1 ) 做4个训练集尺寸分别为3行3列,3行4列,4行3列和2行4列的网络。简写为3*3,3*4,4*3,2*4. 保持这4个网络差值结构的形态一致,…...

mininet+flowvisor+floodlight实现网络切片功能

ininetflowvisorfloodlight实现网络切片功能 这个项目所使用的软件flowvisor 和floodlight 都已经过时了网上能找到的资料太少了,整个项目搭建过程中遇到的坑太多了。花了大量的的时间。 有什么问题可提出来,如果我会的话一定会耐心解答的 此项目主要采…...

【C++】十分钟带你入门C++

目录零 内容概括一 C关键字二 命名空间2.1 命名空间定义2.2 命名空间的使用三 C输入和输出四 缺省参数4.1 缺省参数的概念4.2 缺省参数分类五 函数重载5.1 函数重载的概念六 引用6.1 引用概念6.2 引用特性6.3 常引用6.4 使用场景6.5 效率比较6.6 引用和指针的区别七 内联函数7.…...

kettle利用excel文件增量同步一个库的数据(多表一次增量同步)

利用excel文件增量同步一个库的数据 现在有sqlserver和mysql两个库上的表在进行同步,mysql上的是源表,sqlserver上是目标表。 mysql : sqlserver : 可以看到sqlserver上表的最近一次同步日期分别是 pep表: 2022-10-23 14:19:00.000 stu_…...

面试题:android中A Activity 打开B Activity,为什么A Activity的onStop()方法最后被调用

如下是一段典型的Activity间切换的日志,从A Activity切换到B Activity:10-17 20:54:42.247: I/com.example.servicetest.AActivity(5817): onCreate() 1166919192 taskID66 10-17 20:54:42.263: I/com.example.servicetest.AActivity(5817): onStart()…...

百度版本gactgpt即将来临,gpt人工智能机器横空出世

百度版本gactgpt即将来临,gpt人工智能机器横空出世,“一言”为定!百度版ChatGPT确认!李彦宏OKR曝光,率先应用于收索业务 gactCBT 大获,当下极有可能成为人工智能的 iPhone 时刻。为了在这场人工智能竞赛中…...

【python--networkx】函数说明+代码讲解

【Python–NetworkX】函数说明代码讲解 文章目录【Python--NetworkX】函数说明代码讲解1. 介绍1.1 前言1.2 图的类型(Graph Types)1.3 常用方法2. 代码示例1. 介绍 1.1 前言 NetworkX是复杂网络研究领域中的常用Python包。 1.2 图的类型(G…...

【Jqgrid分页勾选保存】三步实现表格分页勾选(取消勾选)保存(附源码)

目录1、创建临时存储数组,初始化赋值2、单行选中与取消,调整数组3、全选与取消全选,调整数组4、输出数组保存5、片尾彩蛋【写在前面】表格可以说是在我们的web页面中是最常见的,之前我们介绍过layui表格翻页勾选的实现过程&#x…...

Appium移动自动化测试——app控件获取之uiautomatorviewer

下载手机YY http://yydl.duowan.com/mobile/yymobile_client-android/5.4.2/yymobile_client-5.4.2-881.apk 若链接失效,请自行百度 新建maven空白工程 前置条件:安装eclipse,及其maven插件,请自行百度 新建的工程如下&#xf…...

webpack、vite、vue-cli、create-vue 的区别

webpack、vite、vue-cli、create-vue 的区别 首先说结论 Rollup更适合打包库,webpack更适合打包项目应用,vite基于rollup实现了热更新也适合打包项目。 功能工具工具脚手架vue-clicreate-vue构建项目vite打包代码webpackrollup 脚手架:用于初始化&#…...

数据结构——TreeMap、TreeSet与HashMap、HashSet

目录 一、Map 1、定义 2、常用方法 3、注意 二、TreeMap 三、HashMap 1、定义 2、冲突定义 3、冲突避免方法——哈希函数设计 (1)、直接定制法(常用) (2)、除留余数法(常用) (3)、平方取中法 &…...

Spring Boot学习篇(十三)

Spring Boot学习篇(十三) shiro安全框架使用篇(五) 1 准备工作 1.1 在SysUserMapper.xml中书写自定义标签 <select id"findRoles" resultType"string">select name from sys_role where id (select roleid from sys_user_role where userid (S…...

微软Bing的AI人工只能对话体验名额申请教程

微软Bing 免费体验名额申请教程流程ChatGPT这东西可太过火了。国外国内&#xff0c;圈里圈外都是人声鼎沸。微软&#xff0c;谷歌&#xff0c;百度这些大佬纷纷出手。连看个同花顺都有GPT概念了&#xff0c;搞技术&#xff0c;做生意的看来都盯上了 流程 下面就讲一下如何申…...

怎么打造WhatsApp Team?SaleSmartly(ss客服)告诉你

关键词&#xff1a;WhatsApp Team SaleSmartly&#xff08;ss客服&#xff09; 您是否正在寻找一种让您的团队能够在 WhatsApp协作消息传递的解决方案?拥有了 WhatsApp Team&#xff0c;不仅效率提升&#xff0c;还可以在智能聊天工具中比如SaleSmartly&#xff08;ss客服&…...

IPV4地址的原理和配置

第三章&#xff1a;IP地址的配置 IPv4&#xff08;Internet Protocol Version 4&#xff09;协议族是TCP/IP协议族中最为核心的协议族。它工作在TCP/IP协议栈的网络层&#xff0c;该层与OSI参考模型的网络层相对应。网络层提供了无连接数据传输服务&#xff0c;即网络在发送分…...

软件测试面试准备——(一)Selenium(1)基础问题及自动化测试

滴滴面试&#xff1a;1. 自己负责哪部分功能&#xff1f;农餐对接系统分为了两大子系统&#xff0c;一个是个人订餐系统&#xff0c;二是餐馆、个人与农产品供应商进行农产品交易系统。我主要负责组织测试人员对该系统进行测试。我们测试分为两个阶段&#xff1a;一、功能测试阶…...

AcWing 1230.K倍区间

AcWing 1230. K倍区间 题目描述 给定一个长度为 NNN 的数列&#xff0c;A1,A2,…ANA_1, A_2, … A_NA1​,A2​,…AN​ &#xff0c;如果其中一段连续的子序列 Ai,Ai1,…AjA_i, A_{i1}, … A_jAi​,Ai1​,…Aj​ 之和是 KKK 的倍数&#xff0c;我们就称这个区间 [i,j][i,j][i,…...

kubernetes集群部署springcloud项目【AL】【未写完】

kubernetes集群部署springcloud项目【AL】 &#xff08;先手工做&#xff0c;非自动化&#xff09; #环境&#xff1a; 192.168.73.138 master 192.168.73.139 node1 192.168.73.140 node2 192.168.73.137 harbor、mysqlgit clone https://github.com/lizhenliang/simple-…...

各种音频接口比较

时间 参考&#xff1a;https://www.bilibili.com/video/BV1SL4y1q7GZ/?spm_id_from333.337.search-card.all.click&vd_source00bd76f9d6dc090461cddd9f0deb2d51&#xff0c; https://blog.csdn.net/weixin_43794311/article/details/128941346 接口名字时间公司支持格式…...

软件测试面试理论(超详细)

【面试理论知识】1、你的测试职业发展是什么? 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做好测试工程师的要点去要求自己…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...