计算机毕业设计Python+DeepSeek-R1大模型期货价格预测分析 期货价格数据分析可视化预测系 统 量化交易大数据 机器学习 深度学习
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作
主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等
业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、文档编写和辅导、文档降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。
收藏点赞不迷路 关注作者有好处
文末获取源码
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
一、选题意义和背景
期货市场作为全球金融市场的重要组成部分,其价格波动对投资者、生产者和消费者具有深远的影响。准确的期货价格预测不仅有助于投资者制定科学的投资决策,还能为生产者和消费者提供市场趋势的参考,从而促进资源的合理配置和市场的健康发展。然而,传统的期货价格预测方法往往依赖于专家经验和简单的统计分析,这些方法在应对复杂多变的期货市场时存在一定的局限性。
近年来,随着人工智能技术的飞速发展,特别是在自然语言处理(NLP)和深度学习领域的突破,大模型(如BERT、GPT系列等)已经广泛应用于各个行业。DeepSeek-R1大模型作为一种先进的深度学习模型,在自然语言处理、计算机视觉等多个领域取得了显著成果。将其应用于期货价格预测,有望提高预测的准确性和实时性,为投资者提供更加科学的投资决策依据。
二、国内外研究现状
目前,国内外学者在期货价格预测方面进行了大量研究。传统的预测方法包括时间序列分析、回归分析、专家预测法等。然而,这些方法在应对复杂多变的期货市场时,预测精度和实时性有待提高。近年来,随着深度学习技术的兴起,越来越多的学者开始探索将深度学习模型应用于期货价格预测。例如,LSTM神经网络、GRU等循环神经网络模型已被用于期货价格预测,并取得了较好的效果。然而,将DeepSeek-R1大模型应用于期货价格预测的研究尚不多见。
三、研究内容和目标
本研究旨在探索Python结合DeepSeek-R1大模型在期货价格预测中的应用。具体研究内容包括:
- 数据采集与预处理:利用Python编程语言和相关的API接口,从期货交易所、财经新闻网站等渠道获取期货价格数据、财经新闻、社交媒体情绪等多源信息。对数据进行清洗和特征工程,构建技术指标和文本特征。
- 模型构建与训练:基于DeepSeek-R1大模型构建期货价格预测模型。将时间序列特征与文本特征通过注意力机制、拼接或融合层相结合,形成综合特征向量。选择合适的损失函数和优化算法进行模型训练,并进行超参数调优。
- 性能评估与模型解释:使用测试集数据评估模型性能,计算预测准确率、召回率、F1分数等指标。利用SHAP值、LIME等方法解释模型预测结果,提高模型的可信度。
- 系统开发与集成:开发Web应用或移动应用,提供用户友好的预测结果展示和交互功能。实现实时数据获取和模型监控,适时进行模型更新或重新训练,以适应市场变化。
本研究的目标是构建一个基于Python和DeepSeek-R1大模型的期货价格预测系统,实现对期货价格的准确预测,提高预测的准确性和实时性,为投资者提供更加科学的投资决策依据。
四、研究方法和技术路线
本研究拟采取的研究方法和技术路线如下:
- 数据采集与预处理:利用Python编程语言和相关的API接口进行数据收集;使用数据清洗和特征工程技术对数据进行预处理,构建技术指标和文本特征。
- 模型构建与训练:使用DeepSeek-R1大模型进行文本特征提取;将时间序列特征与文本特征相结合,构建综合特征向量;基于Transformer或集成学习方法构建预测模型;选择合适的损失函数和优化算法进行模型训练,并进行超参数调优。
- 性能评估与模型解释:使用测试集数据评估模型性能;利用SHAP值、LIME等方法解释模型预测结果;根据评估结果对模型进行优化和改进。
- 系统开发与集成:使用Python编程语言和相关的Web开发框架进行系统开发;实现实时数据获取和模型监控功能;开发用户友好的界面,提供预测结果展示和交互功能。
五、预期成果和创新点
预期成果包括:
- 构建一个基于Python和DeepSeek-R1大模型的期货价格预测系统。
- 实现期货价格数据的实时获取和预处理。
- 提供准确的期货价格预测结果,并进行可视化展示。
创新点主要体现在:
- 模型创新:首次将DeepSeek-R1大模型应用于期货价格预测领域,探索其预测效果。
- 技术融合:结合Python爬虫技术和数据可视化技术,实现期货价格数据的实时获取和预测结果的直观展示。
六、研究计划与时间表
- 第一阶段(1-2个月):进行文献调研和数据收集工作,明确研究方案和技术路线。
- 第二阶段(3-4个月):进行数据预处理和特征工程工作,构建技术指标和文本特征;进行模型构建与训练工作,选择合适的损失函数和优化算法进行模型训练。
- 第三阶段(5-6个月):进行性能评估与模型解释工作,利用测试集数据评估模型性能;开发用户友好的系统界面,实现实时预测和交互功能。
- 第四阶段(7-8个月):撰写学术论文或技术报告,整理研究成果;进行答辩准备工作,完成课题研究工作。
七、参考文献
由于具体参考文献未在题干中给出,以下列出一些建议的参考文献来源和类型:
- 学术期刊论文:查阅与期货价格预测、机器学习、深度学习、大模型等相关的学术期刊论文,了解国内外的研究动态和最新进展。
- 学术会议论文:参加相关的学术会议,查阅会议论文集,了解最新的研究成果和技术趋势。
- 技术报告和白皮书:查阅相关的技术报告和白皮书,了解行业应用和实践经验。
- 在线资源和开源项目:利用GitHub、CSDN等在线资源平台,查阅相关的开源项目和代码库,学习先进的技术方法和实现方式。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及文档编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻
相关文章:

计算机毕业设计Python+DeepSeek-R1大模型期货价格预测分析 期货价格数据分析可视化预测系 统 量化交易大数据 机器学习 深度学习
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
JVM 面试
JVM 运行时内存区域划分是怎样的? 程序计数器:记录当前线程执行的字节码指令的地址,是线程私有的。 Java 虚拟机栈:每个方法在执行时都会创建一个栈帧,用于存储局部变量表、操作数栈、动态链接、方法出口等信息&#…...

智慧后勤的消防管理:豪越科技为安全护航
智慧后勤消防管理难题大揭秘! 在智慧后勤发展得如火如荼的当下,消防管理却暗藏诸多难题。传统模式下,消防设施分布得那叫一个散,就像一盘散沙,管理起来超费劲。人工巡检不仅效率低,还容易遗漏,不…...
【Elasticsearch】(Java 版)
Elasticsearch(Java 版) 文章目录 Elasticsearch(Java 版)**1. Elasticsearch 简介****1.1 什么是 Elasticsearch?****1.2 核心概念** **2. 安装与配置****2.1 环境要求****2.2 安装步骤****Linux/macOS****Windows** …...

DeepSeek在昇腾上的模型部署 - 常见问题及解决方案
2024年12月26日,DeepSeek-V3横空出世,以其卓越性能备受瞩目。该模型发布即支持昇腾,用户可在昇腾硬件和MindIE推理引擎上实现高效推理,但在实际操作中,部署流程与常见问题困扰着不少开发者。本文将为你详细阐述昇腾Dee…...
安全面试5
文章目录 sql的二次注入在linux下,现在有一个拥有大量ip地址的txt文本文档,但是里面有很多重复的,如何快速去重?在内网渗透中,通过钓鱼邮件获取到主机权限,但是发现内网拦截了tcp的出网流量,聊一…...

【Python量化金融实战】-第2章:金融市场数据获取与处理:2.1 数据源概览:Tushare、AkShare、Baostock、通联数据(DataAPI)
本章将详细介绍四大主流金融数据源(Tushare、AkShare、Baostock、通联数据(DataAPI)),分析其特点与适用场景,并通过实战案例展示数据获取与处理的全流程。 👉 点击关注不迷路 👉 点击…...
Exoplayer(MediaX)实现音频变调和变速播放
在K歌或录音类应用中变调是个常见需求,比如需要播出萝莉音/大叔音等。变速播放在影视播放类应用中普遍存在,在传统播放器Mediaplayer中这两个功能都比较难以实现,特别在低版本SDK中,而Exoplayer作为google官方推出的Mediaplayer替…...

服务器间迁移conda环境
注意:可使用迁移miniconda文件 or 迁移yaml文件两种方式,推荐前者,基本无bug! 一、迁移miniconda文件: 拷贝旧机器的miniconda文件文件到新机器: 内网拷贝:scp -r mazhf192.168.1.233:~/miniconda3 ~/ 外…...

docker高级
文章目录 1.Docker Compose1.1 介绍1.2 compose文件1.3 常用命令1.4 安装1.5 项目说明和构建1.5.1 手工启动1.5.2 compose 编排启动1.5.3 完善 compose.yml1.5.4 加入前端容器 2.UI管理平台2.1 portainer 3.镜像发布3.1 阿里云3.2 Docker Registry3.2.1 介绍3.2.2 安装3.2.3 测…...
Redis Stream基本使用及应用场景
一、概念 Redis Streams是Redis5.0提供的一种消息队列机制,支持多播的可持久化的消息队列,用户实现发布订阅的功能,借鉴了kafka设计。 二、常用命令 命令名称描述XADD key ID field value [field value ...]添加一条消息 key:St…...

DAY40|动态规划Part08|LeetCode: 121. 买卖股票的最佳时机 、 122.买卖股票的最佳时机II 、 123.买卖股票的最佳时机III
目录 LeetCode:121. 买卖股票的最佳时机 暴力解法 贪心法 动态规划法 LeetCode:122.买卖股票的最佳时机II 基本思路 LeetCode: 买卖股票的最佳时机III、IV 基本思路 C代码 LeetCode:121. 买卖股票的最佳时机 力扣题目链接 文字讲解:121. 买卖股票的最佳时…...
【安装及调试旧版Chrome + 多版本环境测试全攻略】
👨💻 安装及调试旧版Chrome 多版本环境测试全攻略 🌐 (新手友好版 | 覆盖安装/运行/调试全流程) 🕰️ 【背景篇】为什么我们需要旧版浏览器测试? 🌍 🌐 浏览器世界的“…...

【Linux】进程间通信——命名管道
文章目录 命名管道什么是命名管道**命名管道 vs. 无名管道**如何创建命名管道 用命名管道实现进程间通信MakefileComm.hppServer.hppClient.hppServer.cppClient.cpp 效果总结 命名管道 什么是命名管道 命名管道,也称为 FIFO(First In First Out&#…...
Qt在Linux嵌入式开发过程中复杂界面滑动时卡顿掉帧问题分析及解决方案
Qt在Linux嵌入式设备开发过程中,由于配置较低,加上没有GPU,我们有时候会遇到有些组件比较多的复杂界面,在滑动时会出现掉帧或卡顿的问题。要讲明白这个问题还得从CPU和GPU的分工说起。 一、硬件层面核心问题根源剖析 CPU&#x…...

AI学习第六天-python的基础使用-趣味图形
在 Python 编程学习过程中,turtle库是一个非常有趣且实用的工具,它可以帮助我们轻松绘制各种图形。结合for循环、random模块以及自定义方法等知识点,能够创作出丰富多彩的图案。下面就来分享一下相关的学习笔记。 一、基础知识点回顾 &…...

[VMware]卸载VMware虚拟机和Linux系统ubuntu(自记录版)
记录一下,不是教程,只是防止我做错了可以回溯一下 我打开vscode,就会跳出下图 虚拟机,Linux还是很久之前学习安装的,种途可能卸载过(不太记得了),现在尝试彻底卸载 彻底卸载VMware虚拟机的详细步骤-CSDN博客虚拟机Vmware 转移 克隆 卸载及移除Linux系统_克隆的虚拟机怎么移除-…...
J-LangChain,用Java实现LangChain编排!轻松加载PDF、切分文档、向量化存储,再到智能问答
Java如何玩转大模型编排、RAG、Agent??? 在自然语言处理(NLP)的浪潮中,LangChain作为一种强大的模型编排框架,已经在Python社区中广受欢迎。然而,对于Java开发者来说,能…...

Cuppa CMS v1.0 任意文件读取(CVE-2022-25401)
漏洞简介: Cuppa CMS v1.0 administrator/templates/default/html/windows/right.php文件存在任意文件读取漏洞 漏洞环境: 春秋云镜中的漏洞靶标,CVE编号为CVE-2022-25401 漏洞复现 弱口令行不通 直接访问administrator/templates/defau…...

可以免费无限次下载PPT的网站
前言 最近发现了一个超实用的网站,想分享给大家。 在学习和工作的过程中,想必做PPT是一件让大家都很头疼的一件事。 想下载一些PPT模板减少做PPT的工作量,但网上大多精美的PPT都是需要付费才能下载使用。 即使免费也有次数限制࿰…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...