【大模型】DeepSeek核心技术之MLA (Multi-head Latent Attention)
文章目录
- 1. Multi-Head Attention (MHA)
- 2. Multi-head Latent Attention (MLA)
- 2.1 低秩压缩
- 2.2 应用RoPE
- 2.3 矩阵融合
- 参考资料
在讲解MLA之前,需要大家对几个基础的概念(KV Cache, Grouped-Query Attention (GQA), Multi-Query Attention (MQA),RoPE)有所了解,这些有助于理解MLA是怎么工作的,为什么需要这么做。
这里给出概念及对应的讲解博客:
- MHA,MQA,GQA及KV Cache:【大模型】MHA,MQA,GQA及KV Cache详解
- 旋转位置编码RoPE:【大模型】旋转位置编码(Rotary Position Embedding,RoPE)
1. Multi-Head Attention (MHA)
首先跟着DeepSeek V2的论文简单回顾一下Multi-Head Attention(MHA)的计算过程,首先给出各个变量的含义如下:
- d d d 代表输出维度(input dim)
- n h n_h nh 代表头数(head数)
- d h d_h dh 代表每个头的维度
- h t h_t ht 代表输入的第 t 个向量
- l l l 代表 transformer 的层数
主要公式如下:
下面来介绍下公式的含义:
- W Q , W K , W V ∈ R d h n h ∗ d W_Q, W_K, W_V \in R^{d_hn_h*d} WQ,WK,WV∈Rdhnh∗d 表示输入维度,公式(1)-(3)中我们只使用一个矩阵来处理多头(multi-head)
- 公式(4)-(6)表示对 q t , k t , v t ∈ R d h n h q_t, k_t, v_t \in R^{d_hn_h} qt,kt,vt∈Rdhnh 进行分割,可以得到每个头对应的 q, k, v
- 公式(7)表示对q, k 进行softmax操作,然后再乘上v
- 公式(8)表示对多头输出的结果进行拼接操作,再乘上 W o W^o Wo得到最终的输出
下面我们分析下,KV Cache的占用量:
对于标准的MHA而言,对于每一个token,KV Cache占用的缓存的大小为 2 n h d h l 2n_hd_hl 2nhdhl。
后续我们要介绍的MLA就是致力于在推理过程中降低 n h d h n_{h} d_{h} nhdh。
2. Multi-head Latent Attention (MLA)
参考资料:全网最细!DeepSeekMLA 多头隐变量注意力:从算法原理到代码实现
2.1 低秩压缩
MLA的核心是对KV做了低秩压缩(Low-Rank Key-Value Joint Compression),在送入标准的MHA算法前,用一个更短的向量来表示原来的长向量,从而大幅减少KV Cache空间。
- 论文地址:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
这里给出MLA的整体结构图:
这里先给出图中一些字母和符号的含义,方便我们后续理解。
- q: query
- k: key
- v: value
- h t h_t ht: 输入的第 t 个向量
- C: compress 压缩
- R: RoPE 旋转位置编码
- D: down 下采样,降维
- U: up 上采样,升维
MLA的核心是对KV做了低秩压缩(Low-Rank Key-Value Joint Compression)来减少KV cache,公示如下:
-
公式(9)中通过下采样矩阵,对输入 h t h_t ht 进行压缩得到中间表示 C t K V {C_t}^{KV} CtKV,再基于公式(10)和(11)进行上采样升维度还原KV。
-
KV cache占用空间大幅下降。从MLA的架构图上可以看到,需要缓存的元素为 C t K V {C_t}^{KV} CtKV和 k t R {k_t}^{R} ktR。这里我们先主要关注 C t K V ∈ R d c {C_t}^{KV} \in R^{d_c} CtKV∈Rdc,且 d c < < n h d h d_c<<{n_h}{d_h} dc<<nhdh 。前面我们提到,对于标准的MHA而言,每一个token的KV Cache大小为 2 n h d h l 2n_hd_hl 2nhdhl。而对MLA而言,每一步token的推理产生的缓存变成 d c l d_c l dcl,缓存的矩阵大小相比于原始KV做了压缩,因此缓存量大幅下降。(补充:deepseek v2中 d c d_{c} dc被设置为 4 d h 4 d_{h} 4dh)
-
在MLA中,同时也压缩了 query 向量。我们知道在KV Cache中,Q的作用只发生在当下,无需缓存。但是在模型训练的过程中,每个输入的token会通过多头注意力机制生成对应的query、key和value,这些中间数据的维度往往非常高,因此占用的内存量也相应很大。所以论文中也提到为了降低训练过程中的激活内存activation memory,DeepSeek-V2还对queries进行低秩压缩。对Q的压缩方式和K、V一致,依然是先降维再升维,这个操作并不能降低KV Cache,而是降低内容占用,另外一方面也可以使得query 和key, value 能在同一个低维空间进行一致性表示。
2.2 应用RoPE
上面这种低秩压缩的计算方式,对于RoPE旋转位置编码是有影响的,因为压缩操作可能已经丢失了某些信息,使得位置编码不能直接和有效地反映原始Q和K的位置关系。因此,不能直接在压缩后的向量上应用RoPE。
那么可不可以在解压后的向量上应用RopE呢?
可以,但是影响效率,因为前面已经说过不显示计算解压后的向量,而是直接应用压缩后的向量。
如何解决呢?Deepseek-V2设计了两个新的向量,单独应用RoPE,将位置信息写入这个新的向量中。
其中, q t , i R {q_{t,i}}^{R} qt,iR 和 k t R {k_t}^R ktR 就是应用了RopE的新向量。

-
需要注意的是,在对 k t R {k_t}^R ktR 进行编码时,它是直接从input hidden h t h_t ht上来的,也就是k向量不需要进行先降维、后升维的操作。
-
压缩完、且RoPE编码完之后,最后将这4个变量( q t C = W U Q c t Q q_{t}^{C}=W^{U Q} c_{t}^{Q} qtC=WUQctQ、 k t C = W U K c t K V \mathbf{k}_{t}^{C}=W^{U K} \mathbf{c}_{t}^{K V} ktC=WUKctKV、 q t R \mathbf{q}_{t}^{R} qtR、 k t R \mathbf{k}_{t}^{R} ktR)分别拼接起来,形成 带信息压缩 的和 带位置信息 的向量。
- 带信息压缩:Query—— q t C \mathbf{q}_{t}^{C} qtC,Key—— k t C \mathbf{k}_{t}^{C} ktC
- 带位置信息:Query—— q t R \mathbf{q}_{t}^{R} qtR,Key—— k t R \mathbf{k}_{t}^{R} ktR
-
最后将拼接后的 q t , i q_{t,i} qt,i 和 k t , i k_{t,i} kt,i,结合 k t C {k}_{t}^{C} ktC来进行后续的multi-head attention的计算(也就是seft-attention的常规计算那一套流程)。
2.3 矩阵融合
从前面的整体结构图中,我们看到向量 c t K V \mathbf{c}_{t}^{K V} ctKV、 k t R \mathbf{k}_{t}^{R} ktR需要缓存以进行生成。 在推理过程中,常规做法需要从 c t K V \mathbf{c}_{t}^{K V} ctKV中恢复 k t C \mathbf{k}_{t}^{C} ktC 和 v t C \mathbf{v}_{t}^{C} vtC以进行注意力计算。
- 在DeepSeek V2中巧妙地利用了矩阵融合操作,将上采样矩阵 W U K W^{UK} WUK融合到 W U Q W^{UQ} WUQ中,并将 W U V W^{UV} WUV融合到 W O W^{O} WO中。也就是说不需要显示地去计算得到 k t C {k}_{t}^{C} ktC 和 v t C {v}_{t}^{C} vtC,而可以直接基于 C t K V {C_t}^{KV} CtKV 进行计算,避免了在推理过程中重复计算 k t C {k}_{t}^{C} ktC 和 v t C {v}_{t}^{C} vtC的开销。
这里解释一下什么是矩阵融合(can be absorbed into)操作。后续计算的时候甚至都不需要显示进行融合操作,而是由神经网络自动通过训练进行的,我们仅需要对压缩后的隐向量操作即可。
最终,MLA单个Token产生的缓存包含了两个部分,即 ( d c + d h R ) l \left(d_{c}+d_{h}^{R}\right) l (dc+dhR)l,实现了计算量小且效果优于MHA的结果。
参考资料
- DeepSeekV2之MLA(Multi-head Latent Attention)详解
- 缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA (By 苏剑林)
- deepseek技术解读(1)-彻底理解MLA(Multi-Head Latent Attention)
- 全网最细!DeepSeekMLA 多头隐变量注意力:从算法原理到代码实现
- 一文通透DeepSeek V2——通俗理解多头潜在注意力MLA:改进MHA,从而压缩KV缓存,提高推理速度
相关文章:

【大模型】DeepSeek核心技术之MLA (Multi-head Latent Attention)
文章目录 1. Multi-Head Attention (MHA)2. Multi-head Latent Attention (MLA)2.1 低秩压缩2.2 应用RoPE2.3 矩阵融合 参考资料 在讲解MLA之前,需要大家对几个基础的概念(KV Cache, Grouped-Query Attention (GQA), Multi-Query Attention (…...
七、JOIN 语法详解与实战示例
一、JOIN 的作用与分类 JOIN 操作用于合并两个或多个表的行,基于表之间的关联字段。以下是常见的 JOIN 类型: JOIN 类型描述INNER JOIN返回两个表匹配的记录LEFT JOIN返回左表所有记录 右表匹配记录(右表无匹配则为NULL)RIGHT …...
Skynet入门(一)
概念 skynet 是一个为网络游戏服务器设计的轻量框架。但它本身并没有任何为网络游戏业务而特别设计的部分,所以尽可以把它用于其它领域。 设计初衷 如何充分利用它们并行运作数千个相互独立的业务。 模块设计建议 在 skynet 中,用服务 (service) 这…...
单片机栈和堆、FALSH、区别
1. Flash(闪存)(程序存储器) 用途 存储程序代码:编译后的机器指令(如 .text 段)、常量数据(如 .rodata 段)等。 掉电不丢失:程序固化在 Flash 中࿰…...

【FL0090】基于SSM和微信小程序的球馆预约系统
🧑💻博主介绍🧑💻 全网粉丝10W,CSDN全栈领域优质创作者,博客之星、掘金/知乎/b站/华为云/阿里云等平台优质作者、专注于Java、小程序/APP、python、大数据等技术领域和毕业项目实战,以及程序定制化开发…...

如何把word文档整个文档插入到excel表格里?
现象: 当我们双击此文档时可以快速打开对应的word文档 实现步骤: 1、点击一下要插入的excel表格里的单元格 2、选择上方的的【插入】【附件】的下拉框下的【对象】 3、选择【由文件创建】-【浏览】 再在弹出的框中选择【桌面】,选择要插…...

PDF文档中表格以及形状解析
我们在做PDF文档解析时有时需要解析PDF文档中的表格、形状等数据。跟解析文本类似的常见的解决方案也是两种。文档解析跟ocr技术处理。下面我们来看看使用文档解析的方案来做PDF文档中的表格、图形解析(使用pdfium库)。 表格解析: 在pdfium库…...

C++20 Lambda表达式新特性:包扩展与初始化捕获的强强联合
文章目录 一、Lambda表达式的历史回顾二、C20 Lambda表达式的两大新特性(一)初始化捕获(Init-Capture)(二)包扩展(Pack Expansion) 三、结合使用初始化捕获与包扩展(一&a…...

51c自动驾驶~合集52
我自己的原文哦~ https://blog.51cto.com/whaosoft/13383340 #世界模型如何推演未来的千万种可能 驾驶世界模型(DWM),专注于预测驾驶过程中的场景演变,已经成为追求自动驾驶的一种有前景的范式。这些方法使自动驾驶系统能够更…...
go设计模式
刘:https://www.bilibili.com/video/BV1kG411g7h4 https://www.bilibili.com/video/BV1jyreYKE8z 1. 单例模式 2. 简单工厂模式 代码逻辑: 原始:业务逻辑层 —> 基础类模块工厂:业务逻辑层 —> 工厂模块 —> 基础类模块…...
FREERTOS的三种调度方式
一、调度器的调度方式 调度器的调度方式解释针对的对象抢占式调度1.高优先级的抢占低优先级的任务 2.高优先级的任务不停止,低优先级的任务不能执行 3.被强占的任务会进入就绪态优先级不同的任务时间片调度1.同等优先级任务轮流享用CPU时间 2.没有用完的时间片&…...

前端依赖nrm镜像管理工具
npm 默认镜像 :https://registry.npmjs.org/ 1、安装 nrm npm install nrm --global2、查看镜像源列表 nrm ls3、测试当前环境下,哪个镜像源速度最快。 nrm test4、 切换镜像源 npm config get registry # 查看当前镜像源 nrm use taobao # 等价于 npm…...
redis repl_backlog_first_byte_offset 这个字段的作用
repl_backlog_first_byte_offset 是 Redis 复制积压缓冲区(Replication Backlog)中的一个关键字段,其作用是 标识积压缓冲区中第一个字节对应的全局复制偏移量。 通俗解释 当主从节点断开重连时,Redis 需要通过复制积压缓冲区&am…...

JavaScript基础(BOM对象、DOM节点、表单)
BOM对象 浏览器介绍 BOM:浏览器对象模型 IEChromeSafariFireFox 三方 QQ浏览器360浏览器 window对象 window代表浏览器窗口 window.innerHeight 734 window.innerWidth 71 window.outerHeight 823 window.outerWidth 782 Navigator对象(不常用&am…...
Java Junit框架
JUnit 是一个广泛使用的 Java 单元测试框架,用于编写和运行可重复的测试。它是 xUnit 家族的一部分,专门为 Java 语言设计。JUnit 的主要目标是帮助开发者编写可维护的测试代码,确保代码的正确性和稳定性。 JUnit 的主要特点 注解驱动&…...
23种设计模式之《备忘录模式(Memento)》在c#中的应用及理解
程序设计中的主要设计模式通常分为三大类,共23种: 1. 创建型模式(Creational Patterns) 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。 工厂方法模式࿰…...
Seaborn知识总结
1、简介 (1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码; …...
flowable中用户相关api
springboot引入flowable:高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类
(以下内容全部来自上述课程) 1.抽象类 父类定义抽象方法后,子类的方法就必须重写,抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为(方法)抽取到父类之后。由于每一个子类执行的内容是不一样…...

安装 Open WebUI
2025.03.01 早上 我已经安装了ollama 和deeseek模型 (本地部署流水账之ollama安装Deepseek安装-CSDN博客),然后需要个与模型沟通的工具(这么说不知道对不对)。 刚开始用的chatbox,安装很方便,…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...