【大模型】DeepSeek核心技术之MLA (Multi-head Latent Attention)
文章目录
- 1. Multi-Head Attention (MHA)
- 2. Multi-head Latent Attention (MLA)
- 2.1 低秩压缩
- 2.2 应用RoPE
- 2.3 矩阵融合
- 参考资料
在讲解MLA之前,需要大家对几个基础的概念(KV Cache, Grouped-Query Attention (GQA), Multi-Query Attention (MQA),RoPE)有所了解,这些有助于理解MLA是怎么工作的,为什么需要这么做。
这里给出概念及对应的讲解博客:
- MHA,MQA,GQA及KV Cache:【大模型】MHA,MQA,GQA及KV Cache详解
- 旋转位置编码RoPE:【大模型】旋转位置编码(Rotary Position Embedding,RoPE)
1. Multi-Head Attention (MHA)
首先跟着DeepSeek V2的论文简单回顾一下Multi-Head Attention(MHA)的计算过程,首先给出各个变量的含义如下:
- d d d 代表输出维度(input dim)
- n h n_h nh 代表头数(head数)
- d h d_h dh 代表每个头的维度
- h t h_t ht 代表输入的第 t 个向量
- l l l 代表 transformer 的层数
主要公式如下:


下面来介绍下公式的含义:
- W Q , W K , W V ∈ R d h n h ∗ d W_Q, W_K, W_V \in R^{d_hn_h*d} WQ,WK,WV∈Rdhnh∗d 表示输入维度,公式(1)-(3)中我们只使用一个矩阵来处理多头(multi-head)
- 公式(4)-(6)表示对 q t , k t , v t ∈ R d h n h q_t, k_t, v_t \in R^{d_hn_h} qt,kt,vt∈Rdhnh 进行分割,可以得到每个头对应的 q, k, v
- 公式(7)表示对q, k 进行softmax操作,然后再乘上v
- 公式(8)表示对多头输出的结果进行拼接操作,再乘上 W o W^o Wo得到最终的输出
下面我们分析下,KV Cache的占用量:
对于标准的MHA而言,对于每一个token,KV Cache占用的缓存的大小为 2 n h d h l 2n_hd_hl 2nhdhl。
后续我们要介绍的MLA就是致力于在推理过程中降低 n h d h n_{h} d_{h} nhdh。
2. Multi-head Latent Attention (MLA)
参考资料:全网最细!DeepSeekMLA 多头隐变量注意力:从算法原理到代码实现
2.1 低秩压缩
MLA的核心是对KV做了低秩压缩(Low-Rank Key-Value Joint Compression),在送入标准的MHA算法前,用一个更短的向量来表示原来的长向量,从而大幅减少KV Cache空间。
- 论文地址:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
这里给出MLA的整体结构图:

这里先给出图中一些字母和符号的含义,方便我们后续理解。
- q: query
- k: key
- v: value
- h t h_t ht: 输入的第 t 个向量
- C: compress 压缩
- R: RoPE 旋转位置编码
- D: down 下采样,降维
- U: up 上采样,升维
MLA的核心是对KV做了低秩压缩(Low-Rank Key-Value Joint Compression)来减少KV cache,公示如下:

-
公式(9)中通过下采样矩阵,对输入 h t h_t ht 进行压缩得到中间表示 C t K V {C_t}^{KV} CtKV,再基于公式(10)和(11)进行上采样升维度还原KV。
-
KV cache占用空间大幅下降。从MLA的架构图上可以看到,需要缓存的元素为 C t K V {C_t}^{KV} CtKV和 k t R {k_t}^{R} ktR。这里我们先主要关注 C t K V ∈ R d c {C_t}^{KV} \in R^{d_c} CtKV∈Rdc,且 d c < < n h d h d_c<<{n_h}{d_h} dc<<nhdh 。前面我们提到,对于标准的MHA而言,每一个token的KV Cache大小为 2 n h d h l 2n_hd_hl 2nhdhl。而对MLA而言,每一步token的推理产生的缓存变成 d c l d_c l dcl,缓存的矩阵大小相比于原始KV做了压缩,因此缓存量大幅下降。(补充:deepseek v2中 d c d_{c} dc被设置为 4 d h 4 d_{h} 4dh)
-
在MLA中,同时也压缩了 query 向量。我们知道在KV Cache中,Q的作用只发生在当下,无需缓存。但是在模型训练的过程中,每个输入的token会通过多头注意力机制生成对应的query、key和value,这些中间数据的维度往往非常高,因此占用的内存量也相应很大。所以论文中也提到为了降低训练过程中的激活内存activation memory,DeepSeek-V2还对queries进行低秩压缩。对Q的压缩方式和K、V一致,依然是先降维再升维,这个操作并不能降低KV Cache,而是降低内容占用,另外一方面也可以使得query 和key, value 能在同一个低维空间进行一致性表示。
2.2 应用RoPE
上面这种低秩压缩的计算方式,对于RoPE旋转位置编码是有影响的,因为压缩操作可能已经丢失了某些信息,使得位置编码不能直接和有效地反映原始Q和K的位置关系。因此,不能直接在压缩后的向量上应用RoPE。
那么可不可以在解压后的向量上应用RopE呢?
可以,但是影响效率,因为前面已经说过不显示计算解压后的向量,而是直接应用压缩后的向量。
如何解决呢?Deepseek-V2设计了两个新的向量,单独应用RoPE,将位置信息写入这个新的向量中。

其中, q t , i R {q_{t,i}}^{R} qt,iR 和 k t R {k_t}^R ktR 就是应用了RopE的新向量。
-
需要注意的是,在对 k t R {k_t}^R ktR 进行编码时,它是直接从input hidden h t h_t ht上来的,也就是k向量不需要进行先降维、后升维的操作。
-
压缩完、且RoPE编码完之后,最后将这4个变量( q t C = W U Q c t Q q_{t}^{C}=W^{U Q} c_{t}^{Q} qtC=WUQctQ、 k t C = W U K c t K V \mathbf{k}_{t}^{C}=W^{U K} \mathbf{c}_{t}^{K V} ktC=WUKctKV、 q t R \mathbf{q}_{t}^{R} qtR、 k t R \mathbf{k}_{t}^{R} ktR)分别拼接起来,形成 带信息压缩 的和 带位置信息 的向量。
- 带信息压缩:Query—— q t C \mathbf{q}_{t}^{C} qtC,Key—— k t C \mathbf{k}_{t}^{C} ktC
- 带位置信息:Query—— q t R \mathbf{q}_{t}^{R} qtR,Key—— k t R \mathbf{k}_{t}^{R} ktR
-
最后将拼接后的 q t , i q_{t,i} qt,i 和 k t , i k_{t,i} kt,i,结合 k t C {k}_{t}^{C} ktC来进行后续的multi-head attention的计算(也就是seft-attention的常规计算那一套流程)。
2.3 矩阵融合
从前面的整体结构图中,我们看到向量 c t K V \mathbf{c}_{t}^{K V} ctKV、 k t R \mathbf{k}_{t}^{R} ktR需要缓存以进行生成。 在推理过程中,常规做法需要从 c t K V \mathbf{c}_{t}^{K V} ctKV中恢复 k t C \mathbf{k}_{t}^{C} ktC 和 v t C \mathbf{v}_{t}^{C} vtC以进行注意力计算。
- 在DeepSeek V2中巧妙地利用了矩阵融合操作,将上采样矩阵 W U K W^{UK} WUK融合到 W U Q W^{UQ} WUQ中,并将 W U V W^{UV} WUV融合到 W O W^{O} WO中。也就是说不需要显示地去计算得到 k t C {k}_{t}^{C} ktC 和 v t C {v}_{t}^{C} vtC,而可以直接基于 C t K V {C_t}^{KV} CtKV 进行计算,避免了在推理过程中重复计算 k t C {k}_{t}^{C} ktC 和 v t C {v}_{t}^{C} vtC的开销。
这里解释一下什么是矩阵融合(can be absorbed into)操作。后续计算的时候甚至都不需要显示进行融合操作,而是由神经网络自动通过训练进行的,我们仅需要对压缩后的隐向量操作即可。

最终,MLA单个Token产生的缓存包含了两个部分,即 ( d c + d h R ) l \left(d_{c}+d_{h}^{R}\right) l (dc+dhR)l,实现了计算量小且效果优于MHA的结果。

参考资料
- DeepSeekV2之MLA(Multi-head Latent Attention)详解
- 缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA (By 苏剑林)
- deepseek技术解读(1)-彻底理解MLA(Multi-Head Latent Attention)
- 全网最细!DeepSeekMLA 多头隐变量注意力:从算法原理到代码实现
- 一文通透DeepSeek V2——通俗理解多头潜在注意力MLA:改进MHA,从而压缩KV缓存,提高推理速度
相关文章:
【大模型】DeepSeek核心技术之MLA (Multi-head Latent Attention)
文章目录 1. Multi-Head Attention (MHA)2. Multi-head Latent Attention (MLA)2.1 低秩压缩2.2 应用RoPE2.3 矩阵融合 参考资料 在讲解MLA之前,需要大家对几个基础的概念(KV Cache, Grouped-Query Attention (GQA), Multi-Query Attention (…...
七、JOIN 语法详解与实战示例
一、JOIN 的作用与分类 JOIN 操作用于合并两个或多个表的行,基于表之间的关联字段。以下是常见的 JOIN 类型: JOIN 类型描述INNER JOIN返回两个表匹配的记录LEFT JOIN返回左表所有记录 右表匹配记录(右表无匹配则为NULL)RIGHT …...
Skynet入门(一)
概念 skynet 是一个为网络游戏服务器设计的轻量框架。但它本身并没有任何为网络游戏业务而特别设计的部分,所以尽可以把它用于其它领域。 设计初衷 如何充分利用它们并行运作数千个相互独立的业务。 模块设计建议 在 skynet 中,用服务 (service) 这…...
单片机栈和堆、FALSH、区别
1. Flash(闪存)(程序存储器) 用途 存储程序代码:编译后的机器指令(如 .text 段)、常量数据(如 .rodata 段)等。 掉电不丢失:程序固化在 Flash 中࿰…...
【FL0090】基于SSM和微信小程序的球馆预约系统
🧑💻博主介绍🧑💻 全网粉丝10W,CSDN全栈领域优质创作者,博客之星、掘金/知乎/b站/华为云/阿里云等平台优质作者、专注于Java、小程序/APP、python、大数据等技术领域和毕业项目实战,以及程序定制化开发…...
如何把word文档整个文档插入到excel表格里?
现象: 当我们双击此文档时可以快速打开对应的word文档 实现步骤: 1、点击一下要插入的excel表格里的单元格 2、选择上方的的【插入】【附件】的下拉框下的【对象】 3、选择【由文件创建】-【浏览】 再在弹出的框中选择【桌面】,选择要插…...
PDF文档中表格以及形状解析
我们在做PDF文档解析时有时需要解析PDF文档中的表格、形状等数据。跟解析文本类似的常见的解决方案也是两种。文档解析跟ocr技术处理。下面我们来看看使用文档解析的方案来做PDF文档中的表格、图形解析(使用pdfium库)。 表格解析: 在pdfium库…...
C++20 Lambda表达式新特性:包扩展与初始化捕获的强强联合
文章目录 一、Lambda表达式的历史回顾二、C20 Lambda表达式的两大新特性(一)初始化捕获(Init-Capture)(二)包扩展(Pack Expansion) 三、结合使用初始化捕获与包扩展(一&a…...
51c自动驾驶~合集52
我自己的原文哦~ https://blog.51cto.com/whaosoft/13383340 #世界模型如何推演未来的千万种可能 驾驶世界模型(DWM),专注于预测驾驶过程中的场景演变,已经成为追求自动驾驶的一种有前景的范式。这些方法使自动驾驶系统能够更…...
go设计模式
刘:https://www.bilibili.com/video/BV1kG411g7h4 https://www.bilibili.com/video/BV1jyreYKE8z 1. 单例模式 2. 简单工厂模式 代码逻辑: 原始:业务逻辑层 —> 基础类模块工厂:业务逻辑层 —> 工厂模块 —> 基础类模块…...
FREERTOS的三种调度方式
一、调度器的调度方式 调度器的调度方式解释针对的对象抢占式调度1.高优先级的抢占低优先级的任务 2.高优先级的任务不停止,低优先级的任务不能执行 3.被强占的任务会进入就绪态优先级不同的任务时间片调度1.同等优先级任务轮流享用CPU时间 2.没有用完的时间片&…...
前端依赖nrm镜像管理工具
npm 默认镜像 :https://registry.npmjs.org/ 1、安装 nrm npm install nrm --global2、查看镜像源列表 nrm ls3、测试当前环境下,哪个镜像源速度最快。 nrm test4、 切换镜像源 npm config get registry # 查看当前镜像源 nrm use taobao # 等价于 npm…...
redis repl_backlog_first_byte_offset 这个字段的作用
repl_backlog_first_byte_offset 是 Redis 复制积压缓冲区(Replication Backlog)中的一个关键字段,其作用是 标识积压缓冲区中第一个字节对应的全局复制偏移量。 通俗解释 当主从节点断开重连时,Redis 需要通过复制积压缓冲区&am…...
JavaScript基础(BOM对象、DOM节点、表单)
BOM对象 浏览器介绍 BOM:浏览器对象模型 IEChromeSafariFireFox 三方 QQ浏览器360浏览器 window对象 window代表浏览器窗口 window.innerHeight 734 window.innerWidth 71 window.outerHeight 823 window.outerWidth 782 Navigator对象(不常用&am…...
Java Junit框架
JUnit 是一个广泛使用的 Java 单元测试框架,用于编写和运行可重复的测试。它是 xUnit 家族的一部分,专门为 Java 语言设计。JUnit 的主要目标是帮助开发者编写可维护的测试代码,确保代码的正确性和稳定性。 JUnit 的主要特点 注解驱动&…...
23种设计模式之《备忘录模式(Memento)》在c#中的应用及理解
程序设计中的主要设计模式通常分为三大类,共23种: 1. 创建型模式(Creational Patterns) 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。 工厂方法模式࿰…...
Seaborn知识总结
1、简介 (1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码; …...
flowable中用户相关api
springboot引入flowable:高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...
java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类
(以下内容全部来自上述课程) 1.抽象类 父类定义抽象方法后,子类的方法就必须重写,抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为(方法)抽取到父类之后。由于每一个子类执行的内容是不一样…...
安装 Open WebUI
2025.03.01 早上 我已经安装了ollama 和deeseek模型 (本地部署流水账之ollama安装Deepseek安装-CSDN博客),然后需要个与模型沟通的工具(这么说不知道对不对)。 刚开始用的chatbox,安装很方便,…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
