当前位置: 首页 > news >正文

【JavaEE】线程安全

【JavaEE】线程安全

  • 一、引出线程安全
  • 二、引发线程安全的原因
  • 三、解决线程安全问题
      • 3.1 synchronized关键字(解决修改操作不是原子的)
        • 3.1.1 synchronized的特性
        • 3.1.1 synchronized的使用事例
      • 3.2 volatile 关键字(解决内存可见性)
  • 四、死锁
      • 4.1 可重入
      • 4.2 两个线程出现的死锁
      • 4.3 哲学家就餐问题
      • 4.4 造成死锁的原因

博客结尾有此篇博客的全部代码!!!

一、引出线程安全

举例:

public class Demo1 {private static int count=0;public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(()->{for (int i = 0; i < 50000; i++) {count++;}});Thread t2 = new Thread(()->{for (int i = 0; i < 50000; i++) {count++;}});t1.start();t2.start();t1.join();t2.join();System.out.println("count="+count);//结果:56154}
}

这段代码运行结束发现结果不是理论值:100000,而是每次运行完出现一个新的数。

在计算机操作系统中,count++;在寄存器中分为三步:读取,加一,写回这三步。

假设:两个线程按照这样进行,那么得到的count的最终值就是理论值100000。
在这里插入图片描述
但往往事实不是这样这样的,CPU资源调度是随机的!!!很有可能是这样的(这里只列举一种情况给大家示范一下):
在这里插入图片描述
首先t1线程和t2 线程分别从内存中读取count值,此时两个线程读取到的count值都是0,然后t1线程进行加一操作后写回到内存中,t2线程也是进行加一操作后写回到内存中,t2线程得到的count值将t1得到的count覆盖,这样count经过两个线程的加一操作之后值还是1!
在这里插入图片描述

二、引发线程安全的原因

  1. 【根本原因】操作系统对于线程的调度是随机的,抢占式执行
  2. 多个线程同时修改同一变量
  3. 修改操作不是原子的(事务中的原子性)
  4. 内存可见性,引起的线程不安全
  5. 指令重排序,引起的线程不安全

三、解决线程安全问题

  • 由于线程调度是随机的,这个不是我们可以左右的;
  • 我们确保多个线程不同时修改同一变量

主要带大家学习引发第三个和第四个引起线程安全的解决方法:

3.1 synchronized关键字(解决修改操作不是原子的)

引发线程安全第三个原因是:修改操作不是原子的;关键字:synchronized将修改操作“锁”在一起(相当于将读取,加一,写回三个操作绑定在一起,三操作要么全部执行,要么全部不执行)
在这里插入图片描述

3.1.1 synchronized的特性
  1. 互斥
    synchronized 会起到互斥效果, 某个线程执⾏到某个对象的 synchronized 中时, 其他线程如果也执⾏到同⼀个对象 synchronized 就会阻塞等待.
    语法:
synchronized(变量){
//修改操作
}

在这里插入图片描述

• 进⼊ synchronized 修饰的代码块, 相当于 加锁
• 退出 synchronized 修饰的代码块, 相当于 解锁

public class Demo2 {private static int count = 0;public static void main(String[] args) throws InterruptedException {Object lock = new Object();Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {synchronized (lock){count++;}}}); Thread t2 = new Thread(()->{for (int i = 0; i < 50000; i++) {synchronized (lock){count++;}}});t1.start();t2.start();t1.join();t2.join();System.out.println("count="+count);//结果:count=10000}
}

当加上锁之后,count值就是10000!
这里需要注意的事:
synchronized(变量)里面的这个变量必须是相同的变量,否则就不会发生阻塞等待!!!
事例 :

public class Demo3 {private static int count = 0;public static void main(String[] args) throws InterruptedException {Object lock1 = new Object();Object lock2 = new Object();Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {synchronized (lock1){count++;}}}); Thread t2 = new Thread(()->{for (int i = 0; i < 50000; i++) {synchronized (lock2){count++;}}});t1.start();t2.start();t1.join();t2.join();System.out.println("count="+count);//结果:count=70738}}
  1. 可重入
    可重入就是指一个线程连续针对一个对象加多次锁,不会出现“死锁”现象称为可重入。
synchronized (block) {synchronized(block) {//代码} //右大括号}2
}  //右大括号}1

按理来说,在进入第一个synchronized的时候,加上了一把锁,此时已经是“锁定状态”,当我们进入到第二个synchronized的时候要加锁,就发生“阻塞等待”,就要等到第一个锁走到右大括号}1解完锁才能加,然而第一个锁走到右大括号}1解锁,又需要第二把锁创建走完到右大括号}2。
这是线程就卡死了,这就是死锁

Java大佬发现了这个问题,所以将synchronized设为可重入锁,这样就不会出现死锁的问题。
• 如果某个线程加锁的时候, 发现锁已经被⼈占⽤, 但是恰好占⽤的正是⾃⼰(这个锁是自己加的), 那么仍然可以继续获取到锁, 并让计数器⾃增.
• 解锁的时候计数器递减为 0 的时候, 才真正释放锁. (才能被别的线程获取到)

3.1.1 synchronized的使用事例
  1. 修饰代码块
    锁定任意对象
    在这里插入图片描述
    锁住当前对象
     public class SynchronizedDemo {public void method() {synchronized (this) {}}}
  1. 直接修饰普通⽅法
public class SynchronizedDemo {public synchronized void methond() {}}
  1. 修饰静态⽅法
public class SynchronizedDemo {public synchronized static void methond() {}}

3.2 volatile 关键字(解决内存可见性)

volatile可以保证内存可见性,只能修饰变量。并且volatile不能保证原子性

计算机运行代码/程序的时候,访问数据常常要从内存中访问(定义变量时变量就储存在内存中),然而CPU从内存中读取数据相比于从寄存器中读取数据要慢上很多(几千上万倍),CPU在进行读/写内存的时候速度就会降低。

为了解决这个问题,提高效率,编译器就可能会对代码优化,把一些本来要读取内存的操作,优化为读取寄存器,减少读取内存的次数。这就会导致内存可见性问题。

以我们接下来的代码为例------当CPU从自身寄存器中读取成千上万次发现count一直是0,此时编译器就将代码优化,让count一直等于0,所以接下来线程1中一直处于循环状态,尽管线程2中已经将count修改为1!

public class Demo4 {private static int count = 0;public static void main(String[] args) throws InterruptedException {Object lock1 = new Object();Thread t1 = new Thread(() -> {while (count == 0) {}System.out.println("循环结束");});Thread t2 = new Thread(() -> {try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}count = 1;});t1.start();t2.start();System.out.println("main 线程结束");}
}

这里修改的方法:给线程1中的程序加入sleep,让它休眠时间大于线程2的休眠时间,这样它读取的count就是1,编译器就不会进行优化,循环就会结束!

Thread t1 = new Thread(() -> {try {Thread.sleep(2000);} catch (InterruptedException e) {throw new RuntimeException(e);}while (count == 0) {}System.out.println("循环结束");});Thread t2 = new Thread(() -> {try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}count = 1;});

volatile解决内存可见性问题:

public class Demo5 {private volatile static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {while (count == 0) {}System.out.println("循环结束");});Thread t2 = new Thread(() -> {try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}count = 1;});t1.start();t2.start();System.out.println("main 线程结束");}
}

四、死锁

死锁是一个非常严重的bug,它会让你的代码在执行到这块卡住!!!

4.1 可重入

public class Demo6 {private static int count = 0;public static void main(String[] args) throws InterruptedException {Object lock = new Object();Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {synchronized (lock) {synchronized (lock) {count++;}}}System.out.println("循环结束");});t1.start();t1.join();System.out.println(count);}
}

由于Java提出了可重入的概念,所以这段代码执行的到这里并没有卡住!但在C++中,没有引入可重入的概念,所以C++这里写出这样的代码就会出现死锁!!!

4.2 两个线程出现的死锁

假设t1线程先拿醋,t2线程先拿酱,两个线程都将醋和酱已经加上自己的锁了,然后t1线程尝试拿酱,t2线程尝试拿醋,此时就会出现死锁!!!

public class Demo7 {public static void main(String[] args) throws InterruptedException {Object lock1 = new Object();Object lock2 = new Object();Thread t1 = new Thread(() -> {synchronized (lock1) {System.out.println("t1拿到醋了!!!");synchronized (lock2) {System.out.println("t1拿到酱了!!!");}}});Thread t2 = new Thread(() -> {synchronized (lock2) {System.out.println("t2拿到酱了!!!");synchronized (lock1) {System.out.println("t2拿到醋了!!!");}}});t1.start();t2.start();t1.join();t2.join();System.out.println("main 线程结束!!!");}
}

如果将两个锁改成并列就不会出现死锁!

     Thread t2 = new Thread(() -> {synchronized (lock2) {System.out.println("t2拿到酱了!!!");}synchronized (lock1) {System.out.println("t2拿到醋了!!!");}});

4.3 哲学家就餐问题

相当于是两个线程出现死锁的进阶(M个线程,N把锁):
5个哲学家(5个线程),5只筷子(5把锁),哲学家坐在圆桌边,桌上放有面条,每只筷子放在每个哲学家的中间。
在这里插入图片描述

每个哲学家,会做两件事:

  1. 思考人生.放下筷子,啥都不干
  2. 吃面条.拿起左右两侧的两根筷子,开始吃面条,

哲学家啥时候吃面条,啥时候思考人生,是随机的
哲学家吃面条啥时候吃完,也是随机的,
哲学家正在吃面条的过程中,会持有左右两侧的筷子。此时相邻的哲学家如果也想吃面条,就需要阻塞等待,
当出现极端情况,每个哲学家都想吃面条,都拿起自己左手边的筷子,并且不会在没吃到面条情况下放下筷子,这时就是死锁了。

4.4 造成死锁的原因

  • 互斥使用(锁的基本特性):当一个线程拿到一把锁后,另一个线程要拿到这把锁就要阻塞等待;
  • 不可抢占(锁的基本特性):当一把锁被线程拿到后,其他线程不能抢占,只能等线程自己释放锁;
  • 请求保持(代码结构):当一个线程拿到一把锁后,再去拿其它锁的时候,已经被拿到的锁不会被释放;
  • 循环/环路 等待(代码结构):阻塞等待的依赖关系形成环了。

此篇博客的全部代码!!!

相关文章:

【JavaEE】线程安全

【JavaEE】线程安全 一、引出线程安全二、引发线程安全的原因三、解决线程安全问题3.1 synchronized关键字&#xff08;解决修改操作不是原子的&#xff09;3.1.1 synchronized的特性3.1.1 synchronized的使用事例 3.2 volatile 关键字&#xff08;解决内存可见性&#xff09; …...

HarmonyOS 5.0应用开发——多线程Worker和@Sendable的使用方法

【高心星出品】 文章目录 多线程Worker和Sendable的使用方法开发步骤运行结果 多线程Worker和Sendable的使用方法 Worker在HarmonyOS中提供了一种多线程的实现方式&#xff0c;它允许开发者在后台线程中执行长耗时任务&#xff0c;从而避免阻塞主线程并提高应用的响应性。 S…...

华为OD-2024年E卷-分批萨[100分]

文章目录 题目描述输入描述输出描述用例1解题思路Python3源码 题目描述 吃货"和"馋嘴"两人到披萨店点了一份铁盘&#xff08;圆形&#xff09;披萨&#xff0c;并嘱咐店员将披萨按放射状切成大小相同的偶数个小块。但是粗心的服务员将披萨切成了每块大小都完全不…...

SSH监控

创建/etc/ssh/sshrc文件 写入以命令 echo " 系统状态 " uptime free -h 每次登录会显示 如果在sshrc文件加入以下脚本每次登录就是执行这个脚本 # cat /etc/ssh/sshrc echo " 系统状态 " uptime free -h /usr/local/bin/monit.sh以…...

leetcode日记(74)扰乱字符串

很有难度的一题&#xff0c;一开始真的绕了很多思维上的弯路。 最开始的想法是递归&#xff0c;看到题目的时候想到动态规划但是完全没有思路应该怎么用&#xff0c;结果确实是递归动态规划。 最开始的想法是构建树&#xff0c;每一层包含这一步划分的方法&#xff08;实际会…...

RV1126的OSD模块和SDL_TTF结合输出H264文件

目录 一.RV1126多线程处理输出OSD字符叠加图层的流程 1.1. VI模块的初始化 1.2. 初始化VENC模块&#xff1a; 1.3. 初始化RGN模块&#xff1a; 1.4. 绑定VI模块和VENC模块&#xff0c;伪代码如下 1.5. 创建多线程进行OSD字库的叠加&#xff1a; 1.6. 获取每一帧处理过后的…...

GEE:计算长时间序列NPP与NDVI之间的相关系数

GEE中内置了计算相关系数的函数&#xff0c;可以分析两个变量之间的相关性&#xff0c;比如要分析两个波段之间的相关性&#xff0c;主要用到ee.Reducer.pearsonsCorrelation()函数。 ee.Reducer.pearsonsCorrelation() 内容&#xff1a;创建一个双输入归约器&#xff0c;用于…...

水仙花数(华为OD)

题目描述 所谓水仙花数&#xff0c;是指一个n位的正整数&#xff0c;其各位数字的n次方和等于该数本身。 例如153是水仙花数&#xff0c;153是一个3位数&#xff0c;并且153 13 53 33。 输入描述 第一行输入一个整数n&#xff0c;表示一个n位的正整数。n在3到7之间&#x…...

【对话状态跟踪】关心整个对话过程用户完整意图变化

对话状态管理器 核心逻辑是解决键冲突和验证范围有效性&#xff0c; 但需依赖外部输入的正确性。在实际应用中&#xff0c; 可能需要结合用户提示或自动修正逻辑以提高鲁棒性。 NLU 槽 值 对儿 NLU的目的是把自然语言解析成结构化语义。结构化语义有多种表示方式&#xff0c…...

【分享】网间数据摆渡系统,如何打破传输瓶颈,实现安全流转?

在数字化浪潮中&#xff0c;企业对数据安全愈发重视&#xff0c;网络隔离成为保护核心数据的重要手段。内外网隔离、办公网与研发网隔离等措施&#xff0c;虽为数据筑牢了防线&#xff0c;却也给数据传输带来了诸多难题。传统的数据传输方式在安全性、效率、管理等方面暴露出明…...

TikTok创作者市场关闭!全新平台TikTok One将带来哪些改变?

TikTok创作者市场关闭&#xff0c;全新平台TikTok One上线&#xff0c;创作者和品牌将迎来哪些新机遇&#xff1f; 近日&#xff0c;TikTok宣布关闭其原有的创作者市场&#xff08;TikTok Creator Marketplace&#xff09;&#xff0c;并推出全新平台TikTok One。这一消息在社…...

LeetCode hot 100—矩阵置零

题目 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&#xff1…...

部署Windows Server自带“工作文件夹”实现企业网盘功能完整步骤

前文已经讲解过Windows Server自带的“工作文件夹”功能&#xff0c;现以Windows Server 2025为例介绍部署工作文件夹的完整步骤&#xff1a; 为了确保您能够顺利部署和充分利用工作文件夹的功能&#xff0c;我将按照以下步骤进行讲解。 请注意&#xff0c;在域环境中部署工作…...

植物大战僵尸杂交版v3.3最新版本(附下载链接)

B站游戏作者潜艇伟伟迷于12月21日更新了植物大战僵尸杂交版3.3版本&#xff01;&#xff01;&#xff01;&#xff0c;有b站账户的记得要给作者三连关注一下呀&#xff01; 不多废话下载链接放上&#xff1a; 夸克网盘链接&#xff1a;&#xff1a;https://pan.quark.cn/s/6f2a…...

非关系型数据库和关系型数据库的区别

非关系型数据库&#xff08;NoSQL&#xff09;和关系型数据库&#xff08;SQL&#xff09;的主要区别体现在以下几个方面&#xff1a; 数据模型&#xff1a; 关系型数据库&#xff08;SQL&#xff09;&#xff1a;数据以表格形式存储&#xff0c;数据行和列组成&#xff0c;每个…...

CPU负载高告警问题的定位与优化建议

#作者&#xff1a;猎人 文章目录 背景一&#xff0e;问题排查1.1 找到相应的容器1.2 找到对应的deployment1.3 查看pod日志1.4 查看nginx配置文件1.5 查看deployment的yaml文件 二&#xff0e;优化建议 背景 Docker 版本&#xff1a;19.03.14 Operating System: Red Hat Ent…...

2月28日,三极管测量,水利-51单片机

众所周知&#xff0c;三极管&#xff08;BJT&#xff09;有三个管脚&#xff0c;基极&#xff08;B&#xff09;、集电极&#xff08;C&#xff09;、发射极&#xff08;E&#xff09;&#xff0c;在实际应用中&#xff0c;不可避免地会遇到引脚辨别的问题。接下来就讲下三极管…...

批量提取 Word 文档中的图片

在 Word 文档中&#xff0c;我们可以插入图片、文本、链接等各种各样的资源。在某些场景下我们需要提取这些信息&#xff0c;比如我们需要提取 Word 文档中的图片&#xff0c;将每一个 Word 文档中的图片都提取出来放到一个单独的文件夹中&#xff0c;那么我们应该怎么做呢&…...

C#—Settings配置详解

C#—Settings配置详解 在C#项目中&#xff0c;全局配置通常指的是应用程序的设置&#xff08;settings&#xff09;&#xff0c;这些设置可以跨多个类或组件使用&#xff0c;并且通常用于存储应用程序的配置信息&#xff0c;如数据库连接字符串、用户偏好设置等。 Settings配置…...

UI自动化框架介绍

selenium Pytest Allure 优势 1.1 更高效的自动化测试 Selenium 提供了强大的浏览器自动化能力&#xff0c;可以模拟用户与网页的交互。它能够在不同浏览器上运行测试&#xff0c;确保 Web 应用程序在多种环境下的兼容性。Pytest 是一个非常灵活、简洁的 Python 测试框架&a…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

十二、【ESP32全栈开发指南: IDF开发环境下cJSON使用】

一、JSON简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;具有以下核心特性&#xff1a; 完全独立于编程语言的文本格式易于人阅读和编写易于机器解析和生成基于ECMAScript标准子集 1.1 JSON语法规则 {"name"…...

Vuex:Vue.js 应用程序的状态管理模式

什么是Vuex&#xff1f; Vuex 是专门为 Vue.js 应用程序开发的状态管理模式 库。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 在大型单页应用中&#xff0c;当多个组件共享状态时&#xff0c;简单的单向数据流…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术点解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术点解析 第一轮&#xff1a;基础概念问题 请解释Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; 程序员JY回答&#xff1a;Spring框架的核心容器是IoC容器&#xff08;控制反转…...