当前位置: 首页 > news >正文

将PDF转为Word的在线工具

参考视频:外文翻译

文章目录

  • 一、迅捷PDF转换器
  • 二、Smallpdf


一、迅捷PDF转换器

在这里插入图片描述

二、Smallpdf

在这里插入图片描述

相关文章:

将PDF转为Word的在线工具

参考视频:外文翻译 文章目录 一、迅捷PDF转换器二、Smallpdf 一、迅捷PDF转换器 二、Smallpdf...

03. 对象的创建,存储和访问原理

文章目录 01. 对象创建1.1 创建过程概览1.2 类加载检查1.3 为对象分配内存1.4 将内存空间初始化为零值1.5 设置对象的必要信息1.6 总结 02. 对象的内存布局2.1 对象头区域2.2 实例数据区域2.3 对齐填充区域2.4 总结 03. 对象的访问定位其他介绍01.关于我的博客 注:读…...

机器学习-GBDT算法

目录 一. GBDT 核心思想 二. GBDT 工作原理 ​**(1) 损失函数优化** ​**(2) 负梯度拟合** ​**(3) 模型更新** 三. GBDT 的关键步骤 四. GBDT 的核心优势 ​**(1) 高精度与鲁棒性** ​**(2) 处理缺失值** ​**(3) 特征重要性分析** ​五. GBDT 的缺点 ​**(1) 训练…...

redis基础结构

title: redis基础结构 date: 2025-03-04 08:39:12 tags: redis categories: redis笔记 Redis入门 (NoSQL, Not Only SQL) 非关系型数据库 关系型数据库:以 表格 的形式存在,以 行和列 的形式存取数据,一系列的行和列被…...

【keil】一种将STM32的armcc例程转换为armclang的方式

【keil】一种将所有armcc例程转换为armclang的方式 改的原因第一步下载最新arm6第二步编译成功 第三步去除一些warning编译成功 我这边用armclang去编译的话,主要是freertos中的portmacro.h和port.c会报错 改的原因 我真的服了,现在大部分的单片机例程都…...

计算机视觉算法实战——表面缺陷检测(表面缺陷检测)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​ 1. 引言 表面缺陷检测是计算机视觉领域中的一个重要研究方向,旨在通过图像处理和机器学习技术自动检测产品表面的缺陷&…...

window下的docker内使用gpu

Windows 上使用 Docker GPU需要进行一系列的配置和步骤。这是因为 Docker 在 Windows 上的运行环境与 Linux 有所不同,需要借助 WSL 2(Windows Subsystem for Linux 2)和 NVIDIA Container Toolkit 来实现 GPU 的支持。以下是详细的流程: 一、环境准备 1.系统要求 Window…...

Modbus协议(TCP)

从今开始,会详细且陆续整理各类的通信协议,以便在需要且自身忘记的情况下,迅速复习。如有错误之处,还请批评指正。 一、Modbus协议的简述 Modbus协议作为应用层协议,基于主从设备模型,主设备负责请求消息&…...

虚拟系统配置实验报告

一、实验拓扑图 二、实验配置 要求一: 虚拟系统: 设置管理: 进行信息配置 R1配置 虚拟系统配置 a: b: c: 测试 a–>b: 检测...

Agentic系统:负载均衡与Redis缓存优化

摘要 本文在前文Agentic系统的基础上,新增负载均衡(动态调整线程数以避免API限流)和缓存机制(使用Redis存储搜索结果,减少API调用)。通过这些优化,系统在高并发场景下更加稳定高效。代码完整可…...

28-文本左右对齐

给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可…...

建筑兔零基础自学python记录39|实战词云可视化项目——章节分布10(上)

这次我们来制作《红楼梦》各章节的分布情况: 源代码: import pandas as pd import numpy as np import matplotlib.pyplot as pltdf_hlm pd.read_csv("hlm.txt", names["hlm_texts"]).dropna()df_hlm df_hlm[~df_hlm.hlm_texts.s…...

Impacket工具中的横向渗透利器及其使用场景对比详解

在渗透测试中,横向移动(Lateral Movement)是指攻击者在获得一个系统的控制权限后,通过网络进一步渗透到其他系统的过程。Impacket 是一款强大的渗透测试工具集,提供了多种实现横向渗透的脚本,常见的工具包括…...

基于java,SpringBoot和Vue的医院药房药品管理系统设计

摘要 随着医疗行业信息化的快速发展,高效、精准的医院药房药品管理对于提升医疗服务质量和医院运营效率至关重要。本文基于 Java 语言,采用 SpringBoot 框架和 Vue 框架进行医院药房药品管理系统的设计与研究。该系统以 SpringBoot 作为后端开发框架&am…...

MQ保证消息的顺序性

在消息队列(MQ)中保证消息的顺序性是一个常见的需求,尤其是在需要严格按顺序处理业务逻辑的场景(例如:订单创建 → 支付 → 发货)。 一、消息顺序性被破坏的原因 生产者异步/并行发送:消息可能…...

cmake、CMakeLists.txt、make、ninja

文章目录 一、概念0.cmake官网1.什么是cmake2.为什么使用cmake3.CMakeLists.txt 二、CMakeLists.txt语法:如何编写CMakeLists.txt,语法详解(0)语法基本原则(1)project关键字(2)set关键字(3)message关键字(4)add_executable关键字(5)add_subdirectory关键…...

数据结构与算法 计算机组成 八股

文章目录 数据结构与算法数组与链表的区别堆的操作红黑树定义及其原理 计算机组成int和uint的表示原码反码补码移码的定义?为什么用补码? 数据结构与算法 数组与链表的区别 堆的操作 红黑树定义及其原理 计算机组成 int和uint的表示 原码反码补码移…...

RoboBrain:从抽象到具体的机器人操作统一大脑模型

25年2月来自北大、北京智源、中科院自动化所等的论文“RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete”。 目前的多模态大语言模型(MLLM) 缺少三项必备的机器人大脑能力:规划能力,将复杂…...

算法 之 前缀和 与 滑动窗口 与 背包问题 的差异(子数组之和为k问题)

文章目录 使用前缀和哈希表560.和为K的子数组525.连续数组2588.统计美丽子数组数目 子数组的定义是原来的数组当中连续的非空的序列,而我们的背包问题的选与不选的情况,对应的是这个非连续的情况,那么这种情况就要注意当然啦,对于线性的时间内…...

微电网协调控制器ACCU-100 分布式光伏 光储充一本化

安科瑞 华楠 18706163979 应用范围: 分布式光伏、微型风力发电、工商业储能、光储充一体化电站、微电网等领域。 主要功能: 数据采集:支持串口、以太网等多通道实时运行,满足各类风电与光伏逆变器、储能等 设备接入&#xff…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...