当前位置: 首页 > news >正文

一体机:DeepSeek性能的“隐形枷锁”!

一体机是DeepSeek交付的最佳方式吗?

恰恰相反,一体机是阻碍DeepSeek提升推理性能的最大绊脚石。

图片

为啥?

只因DeepSeek这个模型有点特殊,它是个高稀疏度的MoE模型。

MoE这种混合专家模型,设计的初衷是通过“激活一堆专家中的少量专家”,来达到减少计算量、提升推理效率的目标。

举个例子,MoE模型好比是一个超级大饭店的后厨,这个后厨里有几百个大厨,每个大厨擅长做不同菜系川菜厨子、鲁菜厨子、湘菜厨子…

这些厨子就相当于不同领域的专家。

图片

其中有个人是厨师长,厨师长不负责炒菜,他清楚地知道每个厨师擅长做什么菜。

这个厨师长就是MoE模型中的门控网络。

图片

每次顾客点菜的时候,厨师长(门控网络)会根据顾客点菜的需求以及自己对厨师能力的了解,安排擅长做这些菜的厨子炒菜。

图片

这样,酒店的后厨就不必为每位厨师安排灶眼,只需少量灶眼(比如8个),供那些需要上岗炒菜(被激活)的厨师使用就可以了。

这就相当于MoE的原理:只激活少量专家,从而大幅降低计算量。

图片

是不是看起来很不错,但是有一点很重要:不参与炒菜的厨子们虽然不占用灶眼,但是还是要挤在后厨随时等待召唤。

也就是说,MoE模型里那些未激活专家,虽然不消耗算力,但它们的参数量仍然要占用显存/内存,带来巨大的存储开销和调度复杂性。

图片

回过头来,我们再来看DeepSeek-R1/V3,是稀疏度极高的MoE模型(总参数量6710亿,激活量370亿)。

按照DeepSeek官方的最新披露,模型每层256个专家,只有8个被激活(V3的Transformer 层数设置为 61 层)。

好比你的饭店有60多个后厨房间,每个屋里放256个厨师,同时只有8个厨师干活,其他待命。

你想想,恐怕只有新东方厨师专修学院才这么干吧。

图片

图片

这就意味着,你需要配置超高的一体机(大显存、大内存),才能够运行满血版DeepSeek。

事实证明,目前的状况也的确如此,市面上的“真·满血DeepSeek一体机”价格都是100万起,甚至要大几百万。

图片

把MoE模型装进一体机的不科学之处在于↓

我花了大钱买了一堆不能同时干活的专家,只为他们可以减少计算量。

然而,这种一体机部署模式算力是我买断的,难道不应该让他们尽量都干活,从而让算力最大化使用吗?

我的显存/内存/硬盘都是为了装下6710亿参数,但实际干活只有370亿参数…

所以,我们的观点是:

一体机其实是运行DeepSeek这种MoE模型的最差选择,更适合运行那些非MoE的全参数激活模型。

这一点,大家如果仔细看上周DeepSeek官方在知乎披露的推理优化架构就明白了。

人家说的很清楚,要想获得“更大的吞吐、更低的延迟”,核心就是要使用「大规模跨节点专家并行」。

你一体机就单个节点、8张卡,勉强装下所有专家,还并行个毛线啊?

图片

按照DeepSeek给出的官方参考推理架构(专家并行、数据并行、PD分离):

Prefill阶段:部署单元4节点(32张H800),32路专家并行和数据并行。

Decode阶段:部署单元18节点(144张H800),144路专家并行和数据并行。

这就意味着,一个22节点的集群(176张卡),才能发挥出最优的推理吞吐和延迟。(让每个专家获得足够的输入,都忙活起来,而不是“占着茅坑不拉屎

图片

图片

正因为这种采用这种大规模并行架构,DeepSeek官方给出的单服务器平均推理性能才高得离谱(输入:73.7k tokens/s,输出14.8k tokens/s)。

而一体机厂商们给出的性能,输出+输入的总和最多也不过4k tokens/s。

图片

当然,我们并不是要否定大模型一体机,只是一体机不适合部署MoE模型,让它跑个稠密模型,不需要大规模并行的,还是很好的。

眼下DeepSeek一体机满天飞,更多的还是满足客户的情绪价值:本地化、开箱即用、专属性……

图片

尤其在数据隐私方面,一体机有着无与伦比的优势,不只是合规,更能切实有效的保护数据不出域。

比如,很多通过API、WEB或APP提供DeepSeek服务的供应商,在他们的用户协议里可能赫然写着“…我们可能会将服务所收集的输入及对应输出,用于本协议下服务的优化…”。

图片

这对于大部分企业级客户来说,这都是无法接受的,所以本地化部署肯定是刚需,这也是目前DeepSeek一体机火爆的原因(即便性能不佳)。

其实,很多企业过去两年自己囤过算力,此时参考DeepSeek的大规模并行架构,部署起来,相信会有不错的效果。

而满血版的DeepSeek一体机,企业可以量预算而行,不要硬上:

第一,蒸馏版,体积小性能好,效果差点不耽误练手;

第二,最近新模型层出不穷,可以尝试下非MoE架构的小体积新模型;

第三,相信不久的将来下一代DeepSeek就会发布,届时再下手也不迟。

大模型的前方是星辰大海,但我们,才刚刚上路呢。

图片

文章参考:一体机,阻碍DeepSeek性能的最大绊脚石! 

相关文章:

一体机:DeepSeek性能的“隐形枷锁”!

一体机是DeepSeek交付的最佳方式吗? 恰恰相反,一体机是阻碍DeepSeek提升推理性能的最大绊脚石。 为啥? 只因DeepSeek这个模型有点特殊,它是个高稀疏度的MoE模型。 MoE这种混合专家模型,设计的初衷是通过“激活一堆专…...

ALBEF的动量蒸馏(Momentum distillation)

简单记录学习~ 一、‌传统 ITC Loss 的局限性‌ ‌One-Hot Label 的缺陷‌ 传统对比学习依赖严格对齐的图文对,通过交叉熵损失(如 softmax 归一化的相似度矩阵)强制模型将匹配的图文对相似度拉高,非匹配对相似度压低‌11。但 one…...

浏览器WEB播放RTSP

注意:浏览器不能直接播放RTSP,必须转换后都能播放。这一点所有的播放都是如此。 参考 https://github.com/kyriesent/node-rtsp-stream GitHub - phoboslab/jsmpeg: MPEG1 Video Decoder in JavaScript 相关文件方便下载 https://download.csdn.net…...

将PDF转为Word的在线工具

参考视频:外文翻译 文章目录 一、迅捷PDF转换器二、Smallpdf 一、迅捷PDF转换器 二、Smallpdf...

03. 对象的创建,存储和访问原理

文章目录 01. 对象创建1.1 创建过程概览1.2 类加载检查1.3 为对象分配内存1.4 将内存空间初始化为零值1.5 设置对象的必要信息1.6 总结 02. 对象的内存布局2.1 对象头区域2.2 实例数据区域2.3 对齐填充区域2.4 总结 03. 对象的访问定位其他介绍01.关于我的博客 注:读…...

机器学习-GBDT算法

目录 一. GBDT 核心思想 二. GBDT 工作原理 ​**(1) 损失函数优化** ​**(2) 负梯度拟合** ​**(3) 模型更新** 三. GBDT 的关键步骤 四. GBDT 的核心优势 ​**(1) 高精度与鲁棒性** ​**(2) 处理缺失值** ​**(3) 特征重要性分析** ​五. GBDT 的缺点 ​**(1) 训练…...

redis基础结构

title: redis基础结构 date: 2025-03-04 08:39:12 tags: redis categories: redis笔记 Redis入门 (NoSQL, Not Only SQL) 非关系型数据库 关系型数据库:以 表格 的形式存在,以 行和列 的形式存取数据,一系列的行和列被…...

【keil】一种将STM32的armcc例程转换为armclang的方式

【keil】一种将所有armcc例程转换为armclang的方式 改的原因第一步下载最新arm6第二步编译成功 第三步去除一些warning编译成功 我这边用armclang去编译的话,主要是freertos中的portmacro.h和port.c会报错 改的原因 我真的服了,现在大部分的单片机例程都…...

计算机视觉算法实战——表面缺陷检测(表面缺陷检测)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​ 1. 引言 表面缺陷检测是计算机视觉领域中的一个重要研究方向,旨在通过图像处理和机器学习技术自动检测产品表面的缺陷&…...

window下的docker内使用gpu

Windows 上使用 Docker GPU需要进行一系列的配置和步骤。这是因为 Docker 在 Windows 上的运行环境与 Linux 有所不同,需要借助 WSL 2(Windows Subsystem for Linux 2)和 NVIDIA Container Toolkit 来实现 GPU 的支持。以下是详细的流程: 一、环境准备 1.系统要求 Window…...

Modbus协议(TCP)

从今开始,会详细且陆续整理各类的通信协议,以便在需要且自身忘记的情况下,迅速复习。如有错误之处,还请批评指正。 一、Modbus协议的简述 Modbus协议作为应用层协议,基于主从设备模型,主设备负责请求消息&…...

虚拟系统配置实验报告

一、实验拓扑图 二、实验配置 要求一: 虚拟系统: 设置管理: 进行信息配置 R1配置 虚拟系统配置 a: b: c: 测试 a–>b: 检测...

Agentic系统:负载均衡与Redis缓存优化

摘要 本文在前文Agentic系统的基础上,新增负载均衡(动态调整线程数以避免API限流)和缓存机制(使用Redis存储搜索结果,减少API调用)。通过这些优化,系统在高并发场景下更加稳定高效。代码完整可…...

28-文本左右对齐

给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词;也就是说,尽可能多地往每行中放置单词。必要时可…...

建筑兔零基础自学python记录39|实战词云可视化项目——章节分布10(上)

这次我们来制作《红楼梦》各章节的分布情况: 源代码: import pandas as pd import numpy as np import matplotlib.pyplot as pltdf_hlm pd.read_csv("hlm.txt", names["hlm_texts"]).dropna()df_hlm df_hlm[~df_hlm.hlm_texts.s…...

Impacket工具中的横向渗透利器及其使用场景对比详解

在渗透测试中,横向移动(Lateral Movement)是指攻击者在获得一个系统的控制权限后,通过网络进一步渗透到其他系统的过程。Impacket 是一款强大的渗透测试工具集,提供了多种实现横向渗透的脚本,常见的工具包括…...

基于java,SpringBoot和Vue的医院药房药品管理系统设计

摘要 随着医疗行业信息化的快速发展,高效、精准的医院药房药品管理对于提升医疗服务质量和医院运营效率至关重要。本文基于 Java 语言,采用 SpringBoot 框架和 Vue 框架进行医院药房药品管理系统的设计与研究。该系统以 SpringBoot 作为后端开发框架&am…...

MQ保证消息的顺序性

在消息队列(MQ)中保证消息的顺序性是一个常见的需求,尤其是在需要严格按顺序处理业务逻辑的场景(例如:订单创建 → 支付 → 发货)。 一、消息顺序性被破坏的原因 生产者异步/并行发送:消息可能…...

cmake、CMakeLists.txt、make、ninja

文章目录 一、概念0.cmake官网1.什么是cmake2.为什么使用cmake3.CMakeLists.txt 二、CMakeLists.txt语法:如何编写CMakeLists.txt,语法详解(0)语法基本原则(1)project关键字(2)set关键字(3)message关键字(4)add_executable关键字(5)add_subdirectory关键…...

数据结构与算法 计算机组成 八股

文章目录 数据结构与算法数组与链表的区别堆的操作红黑树定义及其原理 计算机组成int和uint的表示原码反码补码移码的定义?为什么用补码? 数据结构与算法 数组与链表的区别 堆的操作 红黑树定义及其原理 计算机组成 int和uint的表示 原码反码补码移…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

ip子接口配置及删除

配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

Kafka主题运维全指南:从基础配置到故障处理

#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...