浅谈自动化测试用例创建和文档
通过自动创建测试用例和文档,探索自然语言处理 (NLP) 在革新软件测试方面的变革力量。
技术的快速发展导致对高效和有效的软件测试方法的需求增加。该领域最有前途的进步之一是自然语言处理 (NLP) 技术的集成。NLP 是人工智能(AI)的一个子集,专注于通过自然语言在计算机和人类之间进行交互。在软件测试的上下文中,NLP 提供了自动化测试用例创建和文档编制的潜力,最终减少了与手动测试过程相关的时间、工作量和成本。
本文探讨了在软件测试中使用NLP的好处和挑战,重点是自动化测试用例创建和文档编制。我们将讨论该领域中使用的关键 NLP 技术、实际应用以及 NLP 在软件测试中的未来。
自然语言处理 (NLP) 概述
NLP 是一个交叉学科领域,它结合了计算机科学、语言学和人工智能,使计算机能够理解、解释和生成人类语言。该技术已用于聊天机器人、语音助手、情感分析和机器翻译等各种应用。
NLP 的主要目标是使计算机能够理解和处理大量的自然语言数据,使人类更容易与机器进行交互。NLP 技术可分为两大类:基于规则的方法和基于统计的方法。基于规则的方法依赖于预定义的语言规则和模式,而统计方法则利用机器学习算法从数据中学习。
软件测试中的 NLP
传统上,软件测试一直是一个劳动密集型且耗时的过程,需要深入了解应用程序的功能以及识别和报告潜在问题的能力。测试人员必须创建测试用例,执行它们,并以清晰简洁的方式记录结果。随着现代软件应用程序的复杂性不断增加,软件测试的手动方法变得更具挑战性且更容易出错。
NLP 有可能通过自动化测试用例创建和文档来彻底改变软件测试。通过 利用 NLP 技术,测试工具可以理解以自然语言编写的需求和规范,自动生成测试用例并维护文档。
自动化测试用例创建
NLP 可用于通过从需求文档或用户故事中提取相关信息来自动生成测试用例。这个过程涉及的主要NLP技术包括:
·标记化:将文本分解为单个单词或标记的过程,从而更容易分析和处理文本。
· 词性 (POS) 标记:为给定文本中的每个标记分配语法类别(例如名词、动词、形容词等)。
· 依赖解析:识别文本中标记之间的句法结构和关系。
· 命名实体识别 (NER):检测和分类文本中的实体(例如人、组织、位置等)。
· 语义分析: 从文本中提取含义和上下文,以理解需求或用户故事中描述的实体和动作之间的关系。
通过使用这些技术,基于 NLP 的工具可以处理自然语言输入,并根据识别的实体、动作和条件自动生成测试用例。这不仅减少了创建测试用例所需的时间和精力,而且有助于确保涵盖所有相关场景,从而最大限度地减少遗漏关键测试用例的机会。
自动化测试文档
软件测试的关键方面之一是维护准确和最新的文档,其中概述了测试计划、测试用例和测试结果。该文档对于了解应用程序的状态和确保满足所有要求至关重要。但是,手动维护测试文档既费时又容易出错。
NLP 可用于通过从测试用例和测试结果中提取相关信息并生成人类可读的报告来自动化测试文档。这个过程可能涉及到以下 NLP 技术:
· 文本摘要:创建输入文本的浓缩版本,在保持原始含义的同时突出重点。
· 文本分类: 根据预定义的标签或标准对输入文本进行分类,例如错误的严重性或测试用例的状态。
· 情感分析: 分析文本中表达的情绪基调或情绪,这对于理解用户反馈或错误报告很有用。
· 文档聚类:将相似的文档分组在一起,更容易组织和浏览测试文档。
通过自动化文档流程,基于 NLP 的工具可以确保测试文档始终保持最新和准确,从而降低沟通不畅或遗漏问题的风险。
实际应用
一些组织已经开始将 NLP 纳入其软件测试流程,并取得了可喜的成果。实际应用的一些示例包括:
IBM 的需求质量助理 (RQA)
RQA 是一种基于 AI 的工具,它使用 NLP 技术来分析需求文档并提供建议以提高其清晰度、一致性和完整性。通过利用 NLP,RQA 可以帮助在开发过程的早期识别潜在问题,减少代价高昂的返工和错过需求的可能性。
Testim
Testim 是一个端到端的测试自动化平台,它使用 NLP 和机器学习来生成、执行和维护 Web 应用程序的测试。通过了解应用程序的用户界面 (UI) 元素及其关系,Testim 可以根据真实的用户交互自动创建测试用例,确保全面的测试覆盖率。
Tricentis 的 QTest
QTest 是一种 AI 驱动的测试管理工具,它结合了 NLP 技术,可以自动从用户故事或所需文档中提取测试用例。QTest 可以识别文本中的实体、动作和条件,并据此生成测试用例,简化测试用例创建过程。
挑战与未来展望
尽管 NLP 在自动化测试用例创建和文档编制方面前景广阔,但仍有许多挑战需要克服。一个主要挑战是自然语言的模糊性和复杂性。需求和用户故事的编写方式多种多样,详细程度和清晰度也各不相同,这使得 NLP 算法难以始终如一地提取准确且相关的信息。
此外,NLP 算法的准确性和效率取决于训练数据的质量和数量。由于软件测试是一个特定领域的领域,因此创建高质量的训练数据集可能具有挑战性且耗时。
尽管存在这些挑战,NLP 在软件测试中的未来前景仍然乐观。随着 NLP 算法的不断改进和成熟,预计 NLP 在软件测试工具中的集成将变得更加广泛。此外,NLP 与其他人工智能技术(如强化学习和计算机视觉)的结合,有可能进一步增强自动化测试解决方案的能力。
概括
自然语言处理 (NLP) 提供了一种很有前途的方法来在软件测试中自动创建测试用例和文档。通过利用 NLP 技术的力量,软件测试工具可以有效地处理和理解以自然语言编写的需求,自动生成测试用例,并维护最新的文档。这有可能显着减少与传统手动测试流程相关的时间、精力和成本。
IBM 的 RQA、Testim.io 和 Tricentis 的 QTest 等真实世界的应用程序已经证明了将 NLP 纳入软件测试工作流程的价值。然而,仍有挑战需要解决,例如自然语言的模糊性和复杂性以及对高质量训练数据的需求。
随着 NLP 算法的不断进步和改进,预计 NLP 在软件测试中的作用将扩大并变得更加普遍。将 NLP 与其他 AI 技术相结合可以进一步增强自动化测试解决方案的能力,从而使软件测试过程更加高效和有效。
总而言之,将自然语言处理 (NLP) 集成到软件测试中对于提高测试用例创建和文档编制的效率和有效性大有希望。此外,随着技术的不断发展和成熟,预计它将在未来的软件测试中发挥越来越重要的作用,最终改变我们测试和开发软件应用程序的方式。
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取
相关文章:
浅谈自动化测试用例创建和文档
通过自动创建测试用例和文档,探索自然语言处理 (NLP) 在革新软件测试方面的变革力量。 技术的快速发展导致对高效和有效的软件测试方法的需求增加。该领域最有前途的进步之一是自然语言处理 (NLP) 技术的集成。NLP 是人工智能(AI)的一个子集,专注于通过…...
[Java Web]AJAX Axios | 一种结合HTML来取代传统JSP的技术
⭐作者介绍:大二本科网络工程专业在读,持续学习Java,努力输出优质文章 ⭐作者主页:逐梦苍穹 ⭐所属专栏:Java Web 目录1、AJAX1.1、简介1.2、作用1.3、同步和异步1.4、代码实现1.4.1、服务端1.4.2、客户端1.4.2.1、完善…...
【C++】多态问答题
前言 本篇仅整理一些比较偏的多态的问答题 文章目录前言一. 内联与虚函数二. 静态函数与虚函数三. 构造函数与虚函数四. 虚函数与普通函数结束语一. 内联与虚函数 内联函数可以是虚函数吗? 首先我们看一下语法有没有问题 我们看到,程序成功运行了&#…...
【设计模式】适配器模式
一,定义适配器模式:结构型模式之一,适配器提供客户类需要的接口,适配器的实现就是把客户类的请求转化为对适配者的相应接口的调用。也就是说:当客户类调用适配器的方法时,在适配器类的内部将调用适配者类的方法&#x…...
跨域之CorsFilter
跨域之CorsFilter CorsFilter 是 Spring 框架提供的一个用于处理跨域请求的过滤器。在开发中,我们常常需要处理前端发来的跨域请求,CorsFilter 就可以帮助我们实现这一功能。 CorsFilter 主要用于设置跨域请求的响应头,以允许跨域请求能够被…...
STM32基于HAL工程读取DS1302时间数据
STM32基于HAL工程读取DS1302时间数据✨申明:本文章仅发表在CSDN网站,任何其他网站,未注明来源,见此内容均为盗链和爬取,请多多尊重和支持原创!🍁对于文中所提供的相关资源链接将作不定期更换。📌…...
《Effective Objective-C 2.0 》 阅读笔记 item10
第10条:在既有类中使用关联对象存放自定义数据 1. 关联对象 可以给某对象关联许多其他对象,这些对象通过“键”来区分,这就是关联对象。存储对象值的时候,可以指明“存储策略”(storage policy)ÿ…...
gpt3官网中文版-人工智能软件chat gpt安装
GPT-3(Generative Pre-trained Transformer 3)是一种自然语言处理模型,由OpenAI研发而成。它是GPT系列模型的第三代,也是目前最大、最强大的自然语言处理模型之一,集成了1750亿个参数,具有广泛的使用场景&a…...
工作常用、面试必问:Hive 窗口函数汇总
在SQL中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这…...
spring5(五):AOP操作
spring5(五):AOP操作前言一、代理模式1、场景模拟2、代理模式2.1 概念2.2 静态代理2.3 动态代理二、AOP概述1、什么是 AOP?2、相关术语3、作用三、AOP底层原理1、AOP 底层使用动态代理2、AOP(JDK 动态代理)2.1 编写 J…...
functional.partial
functional.partial__slots____new__中的cls, /是什么意思?functools.partial这个partial类有什么作用类中没有__init__函数Python 内置的 functools.partial 类的实现。这个类可以用来创建一个新的函数对象,该对象是对一个原有函数的参数进行了部分应用…...
C#缩放PDF文件
项目上有个功能需求:将原PDF进行缩放至原先的90%大小。 使用的是spire.pdf插件,但是官方文档上的缩放只是改变显示,最终文件其实没有缩放成功。遂找到了另外的方式进行重绘。 上代码: using Spire.Pdf; using Spire.Pdf.Graphi…...
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day20
大家好,我是陶然同学,软件工程大三即将实习。认识我的朋友们知道,我是科班出身,学的还行,但是对面试掌握不够,所以我将用这100多天更新Java面试题🙃🙃。 不敢苟同,相信大…...
Nsight System的安装和使用
本地安装 官方网站,需要登录 选择Windows Host下载安装 服务器安装 选择Linux CLI .deb下载,上传到服务器之后,执行以下命令,默认会安装在/opt/nvidia/nsight-systems-cli/2023.2.1/target-linux-x64/,nsys在/usr/lo…...
Spring销毁的几种实现
有这3种方法,但是程序执行完成并没有打印出来。一定要手动close.手动执行后会调用如下逻辑:org.springframework.context.support.AbstractApplicationContext#doCloseorg.springframework.context.support.AbstractApplicationContext#destroyBeansorg.…...
【 Spring 核⼼与设计思想 】
文章目录一、Spring 是什么1.1 什么是容器1.2 什么是 IoC二、开发案例对比2.1 传统程序开发2.2 控制反转式程序开发2.3 对⽐总结规律三、理解 Spring IoC四、DI 概念说明五、总结一、Spring 是什么 我们通常所说的 Spring 指的是 Spring Framework(Spring 框架&…...
Arrays.sort()——逆序
package utils;import java.util.*;class ComparatorInteger implements Comparator<Integer> {Override //使得逆序 o1比o2小,返回正数——需要调换位置public int compare(Integer o1, Integer o2) {return o1 < o2 ? 1 : -1;} }class Comparato…...
测试2年遇到瓶颈,如何跨过这个坎,实现涨薪5k?
最近和字节跳动的一个老朋友闲聊,感触颇深,据他说公司近期招聘的测试工程师,大多数候选人都有一个“通病”:在工作2-3年的时候遇到瓶颈,而且是一道很难跨越的坎。为什么会遇到这种情况?因为大部分测试工程师…...
骑行团队怎样才能健康运行?
随着生活水平的提高,自行车运动在国内逐渐被人们所接受,也有越来越多的人加入到骑行的行列中。特别是现在骑行团队的兴起,不仅带动了自行车运动的发展,也带动了整个自行车行业的发展。骑行队就是由一群志同道合的车友组成…...
动力节点王鹤SpringBoot3学习笔记——第四章 访问数据库
目录 第四章 访问数据库 4.1 DataSource 4.2 轻量的JdbcTemplate 4.2.1 准备环境 4.2.1.1 准备数据库和表脚本 4.2.1.2 创建Spring Boot工程 4.2.2 JdbcTemplate访问MySQL 4.2.3 NamedParameterJdbcTemplate 4.2.4 多表查询 4.3 MyBatis 4.3.1 单表CRUD 4.3…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
