【SpringBoot】实现后端服务器发送QQ邮件验证码的功能
步骤
- 一、添加邮件相关依赖
- 二、配置邮件服务器
- 三、发送邮件
- PS:SMTP 发送失败的解决方案
一、添加邮件相关依赖
在 pom.xml 文件中添加 JavaMail 和 Spring Mail 相关的依赖。示例代码如下:
<dependency><groupId>com.sun.mail</groupId><artifactId>javax.mail</artifactId><version>1.6.2</version>
</dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId>
</dependency>
二、配置邮件服务器
在 application.properties 文件中配置邮件服务器相关参数。示例代码如下:
# SMTP服务器地址,QQ邮箱的SMTP服务器地址为smtp.qq.com
spring.mail.host=smtp.qq.com
# SMTP服务器端口,QQ邮箱的SMTP服务器端口为465或587
spring.mail.port=465
# 使用SSL协议连接SMTP服务器
spring.mail.protocol=smtps
# 邮箱用户名,一般以自己的QQ邮箱为发送方,所以写自己的QQ邮箱即可
spring.mail.username=yourusername@qq.com
# 邮箱授权码,不是密码
spring.mail.password=yourauthorizationcode
# 邮件编码
spring.mail.default-encoding=UTF-8
# 是否开启调试模式
spring.mail.debug=true
注意: 服务器发送QQ邮件,需要QQ邮箱的授权码而不是QQ密码进行身份验证。可以通过在 QQ 邮箱的设置中开启POP3/SMTP服务,并记下授权码,步骤如下:
- 登录QQ邮箱,进入邮箱首页。
- 点击页面左上角的“设置”按钮,选择“账户”。
- 在“账户”设置的页面中,找到“POP3/IMAP/SMTP/Exchange/CardDAV/CalDAV服务”选项卡。
- 在“POP3/SMTP服务”部分,点击“开启”按钮。
- 记住授权码
三、发送邮件
@Service
public class UserInfoServiceImpl implements UserInfoService {@Resourceprivate UserInfoMapper userInfoMapper;@Resourceprivate JavaMailSender javaMailSender;// 邮件服务器// 发送邮箱验证码@Overridepublic int sendEmailVerCode(UserInfoDto userInfoDto) {// 创建邮件消息SimpleMailMessage message = new SimpleMailMessage();message.setFrom("yourusername@qq.com");//必须写与配置相同的QQ邮箱message.setTo(userInfoDto.getEmail());//设置接收用户的邮箱message.setSubject("Reset Password Verification Code");// 生成 6 位数字验证码Random random = new Random();int verificationCode = random.nextInt(899999) + 100000;message.setText("Your verification code is: " + verificationCode);// 发送邮件javaMailSender.send(message);// 将验证码返回前端(通过前端直接验证即可)return verificationCode;}
}
PS:SMTP 发送失败的解决方案
建议采用以下方法之一进行排除:
- 如果您的网络使用的是动态 IP 地址,请尝试更换当前 IP 地址再次发送邮件。可以通过重启路由器或重新拨号来更换动态 IP。
- 如果您正在使用 VPN 或代理服务,请尝试暂停使用并再次发送邮件。
- 检查您的防火墙设置,确保您的 Spring Boot 应用程序可以通过防火墙发送邮件。
- 检查您的 QQ 邮箱账户是否存在异常,例如异常登录、账单欠费等情况,这可能会导致邮件无法发送成功。
相关文章:
【SpringBoot】实现后端服务器发送QQ邮件验证码的功能
步骤一、添加邮件相关依赖二、配置邮件服务器三、发送邮件PS:SMTP 发送失败的解决方案一、添加邮件相关依赖 在 pom.xml 文件中添加 JavaMail 和 Spring Mail 相关的依赖。示例代码如下: <dependency><groupId>com.sun.mail</groupId&g…...
vue在input中输入后,按回车,提交数据
vue在input中输入后,按回车,提交数据 1.展示效果如下: 2.代码展示: <div><el-input v-model"toAddNameText" keyup.enter.native"toAddName()" placeholder"回车,即新增该竖杆名称…...
【YOLOX】用YOLOv5框架YOLOX
【YOLOX】用YOLOv5框架YOLOX一、新建common_x.py二、修改yolo.py三、新建yolox.yaml四、训练最近在跑YOLO主流框架的对比实验,发现了一个很奇怪的问题,就是同一个数据集,在不同YOLO框架下训练出的结果差距竟然大的离谱。我使用ultralytics公司…...
【python机器学习实验】——逻辑回归与感知机进行线性分类,附可视化结果!
【python机器学习实验】——逻辑回归与感知机进行线性分类,附可视化结果! 下载链接 下载链接 下载链接 可视化效果图: 感知机模型结果为例: 首先,我们有训练数据和测试数据,其每一行为(x,y,label)的形式…...
wps删除的文件怎么恢复
在办公中,几乎每个人都会用到WPS办公软件。它可以帮助我们快速有效地处理各种Word文档、ppt幻灯片、excel表格等。但有文件就会有清理,如果我们不小心删除了wps文件呢?那些wps删除的文件怎么恢复?针对这种情况,小编为大家带来一些恢复WPS文…...
NIO消息黏包和半包处理
1、前言 我们在进行NIO编程时,通常会使用缓冲区进行消息的通信(ByteBuffer),而缓冲区的大小是固定的。那么除非你进行自动扩容(Netty就是这么处理的),否则的话,当你的消息存进该缓冲…...
day018 第六章 二叉树 part05
一、513.找树左下角的值 这个题目的主要思路是使用广度优先搜索(BFS)遍历整棵树,最后返回最后一层的最左边的节点的值。具体的实现可以使用队列来存储每一层的节点,并且在遍历每一层节点时,不断更新最左边的节点的值。…...
如何下载ChatGPT-ChatGPT如何写作
CHATGPT能否改一下文章 ChatGPT 作为一种自然语言处理技术,生成的文章可能存在表达不够准确或文风不符合要求等问题。在这种情况下,可以使用编辑和修改来改变输出的文章,使其符合特定的要求和期望。 具体来说,可以采用以下步骤对…...
微策略再次买入
原创:刘教链* * *隔夜,比特币再次小幅回升至28k上方。微策略(Microstrategy)创始人Michael Saylor发推表示,微策略再次出手,买入1045枚比特币。此次买入大概花费2930万美元,平均加仓成本28016美…...
express框架
Express 是基于 Node.js 平台,快速、开放、极简的 Web 开发框架. 创建一个基本的express web服务器 // 1.导入express const express require(express); // 2.创建web服务器 const app express(); // 3.启动web服务器 app.listen(80, ()>{console.log(expres…...
完蛋的goals
...
Javase学习文档------面象对象初探
引入面向对象 面向对象的由来: 面向对象编程(Object-Oriented Programming, OOP)是一种编程范型,其由来可以追溯到20世纪60年代。在此之前,主流编程语言采用的是“过程化编程”模式,即面向过程编程模式。在这种模式下&…...
ChatGPT能够干翻谷歌吗?
目前大多数人对于ChatGPT的喜爱,主要源自于其强大的沟通能力,当我们向ChatGPT提出问题时,它不仅能够为我们提供结论,而且还能够与我们建立沟通,向ChatGPT提出任何问题,感觉都像是在与一个真实的人类进行交谈…...
PCL 使用点云创建数字高程模型DEM
目录 一、DEM1、数字高程模型二、代码实现三、结果展示1、点云2、DEM四、相关链接一、DEM 1、数字高程模型 数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形…...
我体验了首个接入GPT-4的代码编辑器,太炸裂了
最近一款名为Cursor的代码编辑器已经传遍了圈内,受到众多编程爱好者的追捧。 它主打的亮点就是,通过 GPT-4 来辅助你编程,完成 AI 智能生成代码、修改 Bug、生成测试等操作。 确实很吸引人,而且貌似也能大大节省人为的重复工作&…...
互联网数据挖掘与分析讲解
一、定义 数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数…...
linux之cut的使用
cut是一个选取命令,就是将一段数据经过分析,取出我们想要的。一般来说,选取信息通常是针对“行”来进行分析的,并不是整篇信息分析的 其语法格式为: cut [-bn] [file] 或 cut [-c][file] 或 cut [-df] [file]使用说明:…...
Redis第十讲 Redis之Hash数据结构Dict-rehash扩容操作
Rehash 执行过程 字典的 rehash 操作实际上就是执行以下任务: 创建一个比 ht[0]->table 更大的 ht[1]->table ;将 ht[0]->table 中的所有键值对迁移到 ht[1]->table ;将原有 ht[0] 的数据清空,并将 ht[1] 替换为新的 ht[0] ; 经过以上步骤之后, 程序就在不改…...
电动力学问题中的Matlab可视化
电磁场的经典描述 小说一则 电磁场的经典描述就是没有啥玩意量子力学的经典电动力学下对电磁场的描述,以后有空写个科幻小说,写啥呢,就写有天张三遇见了一个外星人,外星人来自这样一个星球,星球上的物质密度特别低,导致外星人的测量会明显的影响物质的运动,外星人不能同时得到…...
云原生周刊:编程即将终结?
近日哈佛大学计算机科学的前教授 Matt Welsh,分享了他对计算机科学、分布式计算的未来以及 ChatGPT 和 GitHub Copilot 是否代表编程结束的开始的看法。 威尔士说,编程语言仍然很复杂。再多的工作也无法让它变得简单。 “在我看来,任何改进…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
