当前位置: 首页 > news >正文

焕新启航,「龙蜥大讲堂」2023 年度招募来了!13 场技术分享先睹为快

龙蜥大讲堂是龙蜥推出的系列技术直播活动,邀请龙蜥社区的开发者们分享围绕龙蜥技术展开,包括但不限于内核、编译器、机密计算、容器、储存等相关技术领域。欢迎社区开发者们积极参与,共享技术盛宴。

往期回顾

龙蜥社区技术系列直播截至目前已举办 61 场直播活动,通过钉钉、视频号、B 站平台进行直播,邀请了来自 Arm、阿里云、Intel、浪潮信息、移动、联通、普华基础软件、海光、统信软件、龙芯、飞腾、中科方德、鉴释等公司的开发者进行技术分享。

龙蜥大讲堂覆盖了今日头条、B 站、InfoQ 、CSDN、 51CTO 等多媒体矩阵,吸引了众多开发者和技术爱好者观看,在 51CTO、InfoQ 等媒体渠道播放量均达 2000+,其中镜像集群 SIG 分享视频在传播矩阵中播放量包揽 TOP 5

焕新启航

过去,「龙蜥大讲堂」为大家带来了众多高质量多领域的技术演讲。新年伊始,为了让各位开发者和技术爱好者有更极致的、沉浸式的观看体验,对龙蜥技术有系统且全面的了解,自 2023 年 2 月开始,「龙蜥大讲堂」实现全新改版,以月度主题形式开展当月分享。 如 2 月分享主题为 SysOM 一站式系统迁移运维平台。让我们整个二月一起徜徉在 SysOM 的海洋中吧~

注意:在当月中上旬更新下一月度的演讲主题,并推送至社区官网,请各位感兴趣的技术同学及时关注并报名。

嘉宾招募

3 月分享主题方向——机密计算,比如海光 CSV、AMD SEV、Intel TDX、Intel SGX 等,欢迎小伙伴们报名分享。

报名链接:https://openanolis.mikecrm.com/XlfyCKH

若有任何疑问,欢迎添加龙蜥助手-小龙微信【openanolis_assis】咨询,龙蜥大讲堂详细资料关注龙蜥公众号【OpenAnolis龙蜥】,回复关键字“操作指南”即可获取。

往期全部资料

  • 课件地址:

关注微信公众号(OpenAnolis),回复“龙蜥课件” 即可获取。

  • 视频回放:https://openanolis.cn/video/

下期直播预告

今天(2023.2.13),社区邀请了系统运维 SIG Contributor 李晔分享《龙蜥自动化运维平台 SysOM 2.0 的操作系统迁移功能介绍》,带大家继续了解 SysOM 2.0 中操作系统迁移的功能设计,操作方法和问题排查等。快来扫描上面海报二维码入群,预定前排小板凳观看直播!

相关文章:

焕新启航,「龙蜥大讲堂」2023 年度招募来了!13 场技术分享先睹为快

龙蜥大讲堂是龙蜥推出的系列技术直播活动,邀请龙蜥社区的开发者们分享围绕龙蜥技术展开,包括但不限于内核、编译器、机密计算、容器、储存等相关技术领域。欢迎社区开发者们积极参与,共享技术盛宴。往期回顾龙蜥社区技术系列直播截至目前已举…...

推广传单制作工具

临近节日如何制作推广活动呢?没有素材制作满减活动宣传单怎么办?小编教你如何使用在线设计工具乔拓云,轻松设计商品的专属满减活动宣传单,不仅设计简单,还能自动生成活动分享链接,只需跟着小编下面的设计步…...

软件设计(十一)数据结构(上)

线性结构 线性表 线性表是n个元素的有限序列,通常记为(a1,a2....an),特点如下。 存在唯一的一个称作“第一个”的元素。存在位移的一个称作“最后一个”的元素。除了表头外,表中的每一个元素均只有唯一的直接前趋除了表尾外&…...

https协议

文章目录对称加密方案非对称加密方案对称加密方案非对称加密方案对称加密方案非对称加密方案数字证书因为HTTP是明文传输,所以会很有可能产生中间人攻击(获取并篡改传输在客户端及服务端的信息并不被人发觉),HTTPS加密应运而生。 …...

深入浅出C语言——数据在内存中的存储

文章目录一、数据类型详细介绍1. C语言中的内置类型2. 类型的基本归类:二. 整形在内存中的存储1. 原码、反码、补码2. 大小端三.浮点数存储规则一、数据类型详细介绍 1. C语言中的内置类型 C语言的内置类型有char、short、int、long、long long、float、double&…...

在 Centos 上在线安装 GitLab

作为程序员,其中一个愿望是拥有一个自己的代码存储库。在支持私有部署的代码存储库产品中,GitLab 是比较著名的了,所以今天我总结了一下在 Centos 上安装 GitLab 的过程。 依赖 基础依赖 首先,需要安装部分基础的依赖&#xff…...

模型解释性:SHAP包的使用

本篇博客介绍另一种事后可解释性方法:SHAP(SHapley Additive exPlanation)方法。 1. Shapley值理论 Shapley值是博弈论中的一个概念,通过衡量联盟中各成员对联盟总目标的贡献程度,从而根据贡献程度来进行联盟成员的利益分配,避免…...

算法训练营 day45 动态规划 0-1背包理论 分割等和子集

算法训练营 day45 动态规划 0-1背包理论 分割等和子集 0-1背包理论 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 在下面的讲解中&…...

SSM框架

1.mybatis的底层原理 本质上就是使用反射和动态代理来实现对应的映射关系 2.日志级别 3.传递参数 单个参数的传递和多个参数的传递 Emp selectOne(Param(“xingming”) String name); List selectByCondition(Param(“name”) String name,Param(“sal”) double sal); 4.#和…...

教育行业需要什么样的客服系统?

某教育公司拥有素质教育、成人教育、智慧教育等多个业务板块,日常通过电商、线上媒体、线上线下授课等方式进行业务开展和品牌宣传,取得了非常不错的成绩,受到了很多人的好评反馈。 对于这样一个教育公司,客户来源广泛&#xff0…...

花房集团任命新首席财务官:已跌破IPO发行价,活跃用户下滑

上市刚满2个月,花椒母公司花房集团(HK:03611)的高管就发生了变更。2023年2月12日,花房集团披露的公告显示,董事会宣布赵磊为该公司首席财务官(CFO),自2023年2月10日起生效。 据贝多…...

儿童绘本馆图书借阅租赁知识付费小程序源码交流

1.分类图书 2.书单推荐 4.会员卡次、期限购买 5.借阅时间选择 6.积分签到 7.优惠Q领取 前端uniapp开发 后端thinkphp开发 完全开源 <template> <view class"sp-section sp-index"> <!-- search --> <view class&qu…...

Vue3 中 axios 的安装及使用

目录前言&#xff1a;一、什么是 axios &#xff1f;二、Axios 的配置项三、Axios 的请求方式四、自定义创建实例五、Axios 请求错误处理六、Axios 解决跨域问题七、Axios 请求案例随机笑话大全总结&#xff1a;前言&#xff1a; 在编写vue里的项目时&#xff0c;必须要用和后台…...

Django设计模式以及模板层介绍

MVC和MTV 传统的MVC作用&#xff1a;降低模块间的耦合度&#xff08;解耦&#xff09;Django的MTV模式 作用&#xff1a;降低模块间的耦合度&#xff08;解耦&#xff09;什么是模板 1、模板是可以根据字典数据动态变化的html网页2、模板可以根据视图中传递的字典数据动态生成相…...

Linux信号一门搞定

1.信号是什么&#xff1f; 信号其实就是一个软件中断。 例&#xff1a; 输入命令&#xff0c;在Shell下启动一个前台进程。用户按下Ctrl-C&#xff0c;键盘输入产生一个硬件中断。如果CPU当前正在执行这个进程的代码&#xff0c;则该进程的用户空间代码暂停执行&#xff0c;…...

手撸一个动态Feign,实现一个“万能”接口调用

Feign&#xff0c;在微服务框架中&#xff0c;是的服务直接的调用变得很简洁、简单&#xff0c;而不需要再编写Java Http调用其他微服务的接口。 动态feign 对于fegin调用&#xff0c;我们一般的用法&#xff1a;为每个微服务都创建对应的feignclient接口&#xff0c;然后为每…...

Linux Capabilities 入门

目录 Linux capabilities 是什么&#xff1f; capabilities 的赋予和继承 线程的 capabilities Permitted Effective Inheritable Bounding Ambient 文件的 capabilities Permitted Inheritable Effective 运行 execve() 后 capabilities 的变化 案例 Linux capab…...

驱动 day6

关于设备树的理解&#xff1a; 设备树&#xff08;Device Tree&#xff09;是一种用于特定硬件设备的解释语法树。它用来表示存储有关主板硬件和CPU架构信息的数据在内核中的传递格式&#xff0c;使内核可以更好地了解硬件并支持它们&#xff0c;而不必编写固定的代码。设备节点…...

附录2-tensorflow目标检测

源码来自作者Bubbliiiing&#xff0c;我对参考链接的代码略有修改&#xff0c;网盘地址 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;dvb1 目录 1 参考链接 2 环境 3 数据集准备 3.1 VOCdevkit/VOC2007 3.2 model_data/voc_classes.txt 3.3 voc_an…...

常见的EMC问题

电磁兼容设计的目的就在于满足产品功能要求、减少调试时间&#xff0c;使产品满足电磁兼容标准的要求&#xff0c;并且使产品不会对系统中的其它设备产生电磁干扰。 电磁兼容设计中常见的问题有哪些&#xff1f; 1、电磁兼容设计可以从电路设计&#xff08;包括器件选择&…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...