当前位置: 首页 > news >正文

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3
4
5
6
7
8
9
10
11

基本介绍

MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Attention结合注意力机制多变量时间序列预测。

模型描述

Matlab实现CNN-BiLSTM-Attention多变量时间序列预测
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.CNN_BiLSTM_AttentionNTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。
4.注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主获取。
layers = [% input matrix of spectrogram valuessequenceInputLayer(inputSize,"Name","sequence")sequenceFoldingLayer("Name","fold");% convolutional layersconvolution2dLayer([5 5],10,"Name","conv1","Stride",[2 1])reluLayer("Name","relu1")maxPooling2dLayer([5 5],"Name","maxpool1","Padding","same","Stride",[2 1])convolution2dLayer([5 5],10,"Name","conv2","Stride",[2 1])reluLayer("Name","relu2")maxPooling2dLayer([5 5],"Name","maxpool2","Padding","same","Stride",[2 1])convolution2dLayer([3 3],1,"Name","conv3","Padding",[1 1 1 1])reluLayer("Name","relu3")maxPooling2dLayer([2 2],"Name","maxpool3","Padding","same","Stride",[2 1]);% unfold and feed into LSTMsequenceUnfoldingLayer("Name","unfold")flattenLayer("Name","flatten")bilstmLayer(numHiddenUnits1,"Name","bilstm","OutputMode","last")dropoutLayer(0.4,"Name","dropout")fullyConnectedLayer(numClasses,"Name","fc")softmaxLayer("Name","softmax")classificationLayer("Name","classoutput");];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
% Training
maxEpochs = 200;
learningRate = 0.001;
miniBatchSize = 15; % is this needed?
options = trainingOptions('sgdm', ...'ExecutionEnvironment', 'gpu', ...'GradientThreshold', 1, ...    'MaxEpochs' ,maxEpochs, ...'miniBatchSize',miniBatchSize,...'SequenceLength', 'longest', ...'Verbose', 0, ...'ValidationData', {xVal, yVal}, ...'ValidationFrequency', 30, ...'InitialLearnRate', learningRate, ...'Plots', 'training-progress',...'Shuffle', 'every-epoch');
net = trainNetwork(xTrain, yTrain, lgraph, options);
layers = [ sequenceInputLayer(12,'Normalization','none', 'MinLength', 9);convolution1dLayer(3, 16)batchNormalizationLayer()reluLayer()maxPooling1dLayer(2)convolution1dLayer(5, 32)batchNormalizationLayer()reluLayer() averagePooling1dLayer(2)lstmLayer(100, 'OutputMode', 'last')fullyConnectedLayer(9)softmaxLayer()classificationLayer()];
options = trainingOptions('adam', ...'MaxEpochs',10, ...'MiniBatchSize',27, ...'SequenceLength','longest');
% Train network
net = trainNetwork(XTrain,YTrain,layers,options);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Atte…...

微积分——Rolle定理的理解(罗尔定理)

极值定理(Extreme Value Theorem)指出,闭区间[a,b]上连续的函数既有最大值,也有最小值。然而,其最大最小值都可能发生在端点。罗尔定理(Rolle’s Theorem)以法国数学家Michel Rolle(1652-1719)的名字命名,它给出了极值存在于闭区间…...

linux内核之select/poll/epoll

一些主流应用IO多路复用技术,突破高并发问题,如nginx、redis、netty,分布式服务框架dubbo,大数据组件hadoop、spark、flink、hbase纷纷使用netty作为网络通信组件。 一、背景:C10K问题 The C10K problem 最早被Dan …...

文件流下载

文件下载 后端传给前端json数据流,前端拿到之后存放在自定义的文件中import axios from "axios"; import qs from "query-string"; import {Notification } from "@arco-design/web-vue"; // 接口中需要含有文件名fileName export function dow…...

C语言模拟实现:atoi函数

在实现atoi之前我们先来了解一下atoi函数的作用是什么&#xff1a; 目录 1.实例演示 2.模拟实现 2.1 判断是否为空指针 2.2判断是否为空字符串 2.3判断正负号 2.4判断非数字字符 2.5判断是否越界 2.6完整代码 1.实例演示 //实例演示 #include <stdio.h> #include …...

LeetCode.每日一题 2427. 公因子的数目

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…...

蓝牙BQB认证 - HFP profile配置说明

零.声明 本专栏文章我们会以连载的方式持续更新&#xff0c;本专栏计划更新内容如下&#xff1a; 第一篇:蓝牙综合介绍 &#xff0c;主要介绍蓝牙的一些概念&#xff0c;产生背景&#xff0c;发展轨迹&#xff0c;市面蓝牙介绍&#xff0c;以及蓝牙开发板介绍。 第二篇:Trans…...

【接口测试工具】Eolink Apikit 快速入门教程

Eolink Apikit 下载安装【官方版】&#xff1a;https://www.eolink.com/apikit 发起 API 测试 进入 API 文档详情页&#xff0c;点击上方 测试 标签&#xff0c;进入 API 测试页&#xff0c;系统会根据 API 文档自动生成测试界面并且填充测试数据。 填写请求参数 首先填写好请…...

使用Python和OpenCV实现实时人脸检测并保存截图

在本篇博客中&#xff0c;我们将使用Python和OpenCV库实现一个实时人脸检测的小项目。我们将利用OpenCV中的Haar级联分类器来检测摄像头捕获的图像中的人脸。 项目功能 通过摄像头实时捕获视频流。使用Haar级联分类器检测视频帧中的人脸。在检测到的人脸周围绘制矩形框。实时…...

[linux kernel]slub内存管理分析(7) MEMCG的影响与绕过

文章目录背景前情回顾描述方法约定MEMCG总览省流总结简介slub 相关 memcg机制kernel 5.9 版本之前结构体初始化具体实现kernel 5.9-5.14kernel 5.14 之后突破slab限制方法cross cache attackpage 堆风水总结背景 前情回顾 关于slab几个结构体的关系和初始化和内存分配和释放的…...

MySQL创建数据库(CREATE DATABASE语句)

在 MySQL 中&#xff0c;可以使用 CREATE DATABASE 语句创建数据库&#xff0c;语法格式如下&#xff1a; CREATE DATABASE [IF NOT EXISTS] <数据库名> [[DEFAULT] CHARACTER SET <字符集名>] [[DEFAULT] COLLATE <校对规则名>]; [ ]中的内容是可选的。语…...

【JavaWeb】4—Tomcat

⭐⭐⭐⭐⭐⭐ Github主页&#x1f449;https://github.com/A-BigTree 笔记链接&#x1f449;https://github.com/A-BigTree/Code_Learning ⭐⭐⭐⭐⭐⭐ 如果可以&#xff0c;麻烦各位看官顺手点个star~&#x1f60a; 如果文章对你有所帮助&#xff0c;可以点赞&#x1f44d;…...

宝塔Linux面板部署Python flask项目

目录 &#x1f449;1、前言 &#x1f449;2、安装python项目管理器 &#x1f449;3、上传项目文件及文件夹 &#x1f449;4、配置项目 &#x1f449;5、请求测试 学习记录&#xff1a; &#x1f449;1、前言 写在前面&#xff1a;前几天我们实现了外网内外登录正方教务系…...

spring中产生bean的几种方式

BeanImportMyImportSelector implements ImportSelectorMyImportBeanDefinitionRegistarimplements ImportBeanDefinitionRegistrarFactoryBean这里着重讲解FactoryBean如何判断当前bean是否是FactoryBeanorg.springframework.beans.factory.support.AbstractBeanFactory#isFac…...

OD-火星文计算(Python)

火星文计算 题目描述 已经火星人使用的运算符号为# $ 其与地球人的等价公式如下x#y2*x3*y4x$y3*xy2x y是无符号整数 地球人公式按照c语言规则进行计算 火星人公式中$符优先级高于#相同的运算符按从左到右的顺序运算 输入描述 火星人字符串表达式结尾不带回车换行 输入的字符…...

【vue3教程】初入了解vue3的基本结构

前言 Animatrix&#xff1a;黑客帝国 Blade Runner&#xff1a;银翼杀手 Cowboy Bebop&#xff1a;星际牛仔 Dragon Ball&#xff1a;龙珠 Evangelion&#xff1a;新世纪福音战士 Ghostin the Shell&#xff1a;攻壳机动队 Hunter X Hunter&#xff1a;全职猎人 Initial D&…...

智慧供水综合运营平台解决方案

一、概述 建设背景&#xff1a; 供水系统是城市生存、发展的基础&#xff0c;供水事业的发展与城市的社会经济发展息息相关&#xff0c;其服务质量的好坏不仅关系到供水企业自身的利益&#xff0c;也直接影响到社会的稳定和政府形象。住房城乡建设部于2012年12月5日正式发布了《…...

文件系统、描述符和缓冲区

目录 &#x1f3c6;一、文件系统 1、open ①对open接口的介绍 ②接口使用 2、write接口 3、read接口 &#x1f3c6;二、深入理解文件描述符fd 1、fd具体实质 2、文件fd的分配规则 3、fd重定向 ①输出重定向 ②追加重定向 ③输入重定向 ④文件的引用计数 &#x1f3c6;三…...

java微服务商城高并发秒杀项目--009.流控规则和降级规则

线程流控&#xff08;只要线程数达到了指定数量&#xff0c;访问就会被流控&#xff09;&#xff1a;warm up流控效果&#xff08;慢慢增加QPS的数量&#xff0c;之后最后达到阈值&#xff0c;这种情况下&#xff0c;一开始会容易限流&#xff0c;后期就不会限流了&#xff09;…...

php编写的脚本,如何才能在windows系统运行呢?

咱们要在Windows系统上运行PHP脚本&#xff0c;需要安装PHP解释器和Web服务器。 以下是基本的步骤&#xff0c;很简单&#xff1a; 下载PHP解释器&#xff1a;可以从官方网站 https://windows.php.net/download/ 下载Windows版本的PHP解释器。根据你的操作系统和需要的版本选…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...