当前位置: 首页 > news >正文

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3
4
5
6
7
8
9
10
11

基本介绍

MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Attention结合注意力机制多变量时间序列预测。

模型描述

Matlab实现CNN-BiLSTM-Attention多变量时间序列预测
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.CNN_BiLSTM_AttentionNTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。
4.注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主获取。
layers = [% input matrix of spectrogram valuessequenceInputLayer(inputSize,"Name","sequence")sequenceFoldingLayer("Name","fold");% convolutional layersconvolution2dLayer([5 5],10,"Name","conv1","Stride",[2 1])reluLayer("Name","relu1")maxPooling2dLayer([5 5],"Name","maxpool1","Padding","same","Stride",[2 1])convolution2dLayer([5 5],10,"Name","conv2","Stride",[2 1])reluLayer("Name","relu2")maxPooling2dLayer([5 5],"Name","maxpool2","Padding","same","Stride",[2 1])convolution2dLayer([3 3],1,"Name","conv3","Padding",[1 1 1 1])reluLayer("Name","relu3")maxPooling2dLayer([2 2],"Name","maxpool3","Padding","same","Stride",[2 1]);% unfold and feed into LSTMsequenceUnfoldingLayer("Name","unfold")flattenLayer("Name","flatten")bilstmLayer(numHiddenUnits1,"Name","bilstm","OutputMode","last")dropoutLayer(0.4,"Name","dropout")fullyConnectedLayer(numClasses,"Name","fc")softmaxLayer("Name","softmax")classificationLayer("Name","classoutput");];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
% Training
maxEpochs = 200;
learningRate = 0.001;
miniBatchSize = 15; % is this needed?
options = trainingOptions('sgdm', ...'ExecutionEnvironment', 'gpu', ...'GradientThreshold', 1, ...    'MaxEpochs' ,maxEpochs, ...'miniBatchSize',miniBatchSize,...'SequenceLength', 'longest', ...'Verbose', 0, ...'ValidationData', {xVal, yVal}, ...'ValidationFrequency', 30, ...'InitialLearnRate', learningRate, ...'Plots', 'training-progress',...'Shuffle', 'every-epoch');
net = trainNetwork(xTrain, yTrain, lgraph, options);
layers = [ sequenceInputLayer(12,'Normalization','none', 'MinLength', 9);convolution1dLayer(3, 16)batchNormalizationLayer()reluLayer()maxPooling1dLayer(2)convolution1dLayer(5, 32)batchNormalizationLayer()reluLayer() averagePooling1dLayer(2)lstmLayer(100, 'OutputMode', 'last')fullyConnectedLayer(9)softmaxLayer()classificationLayer()];
options = trainingOptions('adam', ...'MaxEpochs',10, ...'MiniBatchSize',27, ...'SequenceLength','longest');
% Train network
net = trainNetwork(XTrain,YTrain,layers,options);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Atte…...

微积分——Rolle定理的理解(罗尔定理)

极值定理(Extreme Value Theorem)指出,闭区间[a,b]上连续的函数既有最大值,也有最小值。然而,其最大最小值都可能发生在端点。罗尔定理(Rolle’s Theorem)以法国数学家Michel Rolle(1652-1719)的名字命名,它给出了极值存在于闭区间…...

linux内核之select/poll/epoll

一些主流应用IO多路复用技术,突破高并发问题,如nginx、redis、netty,分布式服务框架dubbo,大数据组件hadoop、spark、flink、hbase纷纷使用netty作为网络通信组件。 一、背景:C10K问题 The C10K problem 最早被Dan …...

文件流下载

文件下载 后端传给前端json数据流,前端拿到之后存放在自定义的文件中import axios from "axios"; import qs from "query-string"; import {Notification } from "@arco-design/web-vue"; // 接口中需要含有文件名fileName export function dow…...

C语言模拟实现:atoi函数

在实现atoi之前我们先来了解一下atoi函数的作用是什么&#xff1a; 目录 1.实例演示 2.模拟实现 2.1 判断是否为空指针 2.2判断是否为空字符串 2.3判断正负号 2.4判断非数字字符 2.5判断是否越界 2.6完整代码 1.实例演示 //实例演示 #include <stdio.h> #include …...

LeetCode.每日一题 2427. 公因子的数目

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…...

蓝牙BQB认证 - HFP profile配置说明

零.声明 本专栏文章我们会以连载的方式持续更新&#xff0c;本专栏计划更新内容如下&#xff1a; 第一篇:蓝牙综合介绍 &#xff0c;主要介绍蓝牙的一些概念&#xff0c;产生背景&#xff0c;发展轨迹&#xff0c;市面蓝牙介绍&#xff0c;以及蓝牙开发板介绍。 第二篇:Trans…...

【接口测试工具】Eolink Apikit 快速入门教程

Eolink Apikit 下载安装【官方版】&#xff1a;https://www.eolink.com/apikit 发起 API 测试 进入 API 文档详情页&#xff0c;点击上方 测试 标签&#xff0c;进入 API 测试页&#xff0c;系统会根据 API 文档自动生成测试界面并且填充测试数据。 填写请求参数 首先填写好请…...

使用Python和OpenCV实现实时人脸检测并保存截图

在本篇博客中&#xff0c;我们将使用Python和OpenCV库实现一个实时人脸检测的小项目。我们将利用OpenCV中的Haar级联分类器来检测摄像头捕获的图像中的人脸。 项目功能 通过摄像头实时捕获视频流。使用Haar级联分类器检测视频帧中的人脸。在检测到的人脸周围绘制矩形框。实时…...

[linux kernel]slub内存管理分析(7) MEMCG的影响与绕过

文章目录背景前情回顾描述方法约定MEMCG总览省流总结简介slub 相关 memcg机制kernel 5.9 版本之前结构体初始化具体实现kernel 5.9-5.14kernel 5.14 之后突破slab限制方法cross cache attackpage 堆风水总结背景 前情回顾 关于slab几个结构体的关系和初始化和内存分配和释放的…...

MySQL创建数据库(CREATE DATABASE语句)

在 MySQL 中&#xff0c;可以使用 CREATE DATABASE 语句创建数据库&#xff0c;语法格式如下&#xff1a; CREATE DATABASE [IF NOT EXISTS] <数据库名> [[DEFAULT] CHARACTER SET <字符集名>] [[DEFAULT] COLLATE <校对规则名>]; [ ]中的内容是可选的。语…...

【JavaWeb】4—Tomcat

⭐⭐⭐⭐⭐⭐ Github主页&#x1f449;https://github.com/A-BigTree 笔记链接&#x1f449;https://github.com/A-BigTree/Code_Learning ⭐⭐⭐⭐⭐⭐ 如果可以&#xff0c;麻烦各位看官顺手点个star~&#x1f60a; 如果文章对你有所帮助&#xff0c;可以点赞&#x1f44d;…...

宝塔Linux面板部署Python flask项目

目录 &#x1f449;1、前言 &#x1f449;2、安装python项目管理器 &#x1f449;3、上传项目文件及文件夹 &#x1f449;4、配置项目 &#x1f449;5、请求测试 学习记录&#xff1a; &#x1f449;1、前言 写在前面&#xff1a;前几天我们实现了外网内外登录正方教务系…...

spring中产生bean的几种方式

BeanImportMyImportSelector implements ImportSelectorMyImportBeanDefinitionRegistarimplements ImportBeanDefinitionRegistrarFactoryBean这里着重讲解FactoryBean如何判断当前bean是否是FactoryBeanorg.springframework.beans.factory.support.AbstractBeanFactory#isFac…...

OD-火星文计算(Python)

火星文计算 题目描述 已经火星人使用的运算符号为# $ 其与地球人的等价公式如下x#y2*x3*y4x$y3*xy2x y是无符号整数 地球人公式按照c语言规则进行计算 火星人公式中$符优先级高于#相同的运算符按从左到右的顺序运算 输入描述 火星人字符串表达式结尾不带回车换行 输入的字符…...

【vue3教程】初入了解vue3的基本结构

前言 Animatrix&#xff1a;黑客帝国 Blade Runner&#xff1a;银翼杀手 Cowboy Bebop&#xff1a;星际牛仔 Dragon Ball&#xff1a;龙珠 Evangelion&#xff1a;新世纪福音战士 Ghostin the Shell&#xff1a;攻壳机动队 Hunter X Hunter&#xff1a;全职猎人 Initial D&…...

智慧供水综合运营平台解决方案

一、概述 建设背景&#xff1a; 供水系统是城市生存、发展的基础&#xff0c;供水事业的发展与城市的社会经济发展息息相关&#xff0c;其服务质量的好坏不仅关系到供水企业自身的利益&#xff0c;也直接影响到社会的稳定和政府形象。住房城乡建设部于2012年12月5日正式发布了《…...

文件系统、描述符和缓冲区

目录 &#x1f3c6;一、文件系统 1、open ①对open接口的介绍 ②接口使用 2、write接口 3、read接口 &#x1f3c6;二、深入理解文件描述符fd 1、fd具体实质 2、文件fd的分配规则 3、fd重定向 ①输出重定向 ②追加重定向 ③输入重定向 ④文件的引用计数 &#x1f3c6;三…...

java微服务商城高并发秒杀项目--009.流控规则和降级规则

线程流控&#xff08;只要线程数达到了指定数量&#xff0c;访问就会被流控&#xff09;&#xff1a;warm up流控效果&#xff08;慢慢增加QPS的数量&#xff0c;之后最后达到阈值&#xff0c;这种情况下&#xff0c;一开始会容易限流&#xff0c;后期就不会限流了&#xff09;…...

php编写的脚本,如何才能在windows系统运行呢?

咱们要在Windows系统上运行PHP脚本&#xff0c;需要安装PHP解释器和Web服务器。 以下是基本的步骤&#xff0c;很简单&#xff1a; 下载PHP解释器&#xff1a;可以从官方网站 https://windows.php.net/download/ 下载Windows版本的PHP解释器。根据你的操作系统和需要的版本选…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...