杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言
2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国自主的发明专利技术,商用必须获得授权,可提供linux(麒麟、鸿蒙)、x64、riscv、ARM等库,可在GPU上实现视频清晰化处理。在相同的尺寸下加权概率模型优化后的效果:
效率方面还不错,一张1080P的图像大概能在1秒左右运算完毕。如果采用多线程完全可以在GPU上实现多帧优化。上面相关参数设置的比较夸张,实际情况下可以根据个人感觉进行设置。
二、测试程序
int main() { // 3ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];int i, length;ImageEnhanced imageEnhanced;// 设置对应的参数imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 7; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 3; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "xxxx"; // xxxx为BMP图像的名称sprintf_s(url1, 200, "D:\\%s.bmp", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_BMPFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时,包括了bmp图像读写和运算部分printf("运算总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
三、vs2019下引用的方法
新建一个控制台项目,然后右击:
然后新建一个main.cpp
#include "WJLImageEnhancement.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <time.h>
#include <math.h>
using namespace std;
#ifdef WIN32
#define inline __inline
#endif // WIN32int main() { // 4ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];ImageEnhanced imageEnhanced;// 设置对应的参数,根据个人喜好设置imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 5; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 2; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "heye"; // jpg的文件名sprintf_s(url1, 200, "D:\\%s.jpg", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_JPGFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时printf("变换算法总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
比如下面的效果图:
控制台运行时间:
然后比较两张图的效果如下:
参数不同将产生不同的效果:
通过测试,各参数的设置取值范围为:
在杰林码超分辨率的算法程序内,主要是ImageEnhanced结构体的参数直接影响到图像输出的质量。
参数名称 | 取值范围 | 功能说明 |
---|---|---|
magnification | 0-3 | 尺寸放大参数,0表示不放大,1代表图像放大(1+1)(1+1)=4倍,2代表图像放大(2+1)(2+1)=9倍,一般情况下1080P放大到4K输入1即可,一般设置为0-2 |
jielin_ratio | 0-49 | 杰林码算法的前景背景像素分离的核心参数,越接近0获得的像素块越接近纹理背景,越接近49获得的像素块越接近前景,通过参数设置把图像分割成为前景像素块和背景像素块,属于频率变换算法的一种,一般设置为15-35 |
contour_size | 4-32 | 这个是以块为单位的轮廓预测参数,一般情况下设置为15,越小效率越高,但是轮廓预测的越不准确,一般设置为15-24 |
foreground_clear_size | 1-16 | 前景像素块内的连续像素个数,此值越大运算越慢,前景和背景的轮廓越清晰,一般设置为1-8 |
background_clear_size | 1-8 | 背景纹理预测的连续像素个数,此值越大运算越慢,纹理越清晰,一般设置为1-3 |
相关文章:

杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言 2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国…...

在three.js中废置对象
基于three.js子如何废置对象(How to dispose of objects) 前言: 为了提高性能,并避免应用程序中的内存泄露,一个重要的方面是废置未使用的类库实体。 每当创建一个three.js中的实例时,都会分配一定数量的内存。然而,three.js会创建在渲染中所必需的特定对象, 例如几何…...

Java中的String类真的不可变吗?
其实在Java中,String类被final修饰,主要是为了保证字符串的不可变性,进而保证了它的安全性。那么final到底是怎么保证字符串安全性的呢?接下来就让我们一起来看看吧。 一. final的作用 1. final关键词修饰的类不可以被其他类继…...

电脑重装了系统开不了机怎么办?
我们的电脑办公用久后也会出现故障问题,例如卡顿反应慢等等,这时候就要进行重装系统了,但是很多小伙伴重装系统后会出现开不了机的问题,其实我们比较常见的也就是电脑重装系统开不了机的情况。有很多小伙伴反映自己不知道应该怎么…...
SPOJ-NSUBSTR - Substrings(SAM求所有长度子串的最大出现次数)
NSUBSTR - Substrings 题面翻译 你得到了一个最多由 250000250000250000 个小写拉丁字母组成的字符串 SSS。定义 F(x)F(x)F(x) 为 SSS 的某些长度为 xxx 的子串在 SSS 中的最大出现次数。即 F(x)max{times(T)}F(x)max\{times(T)\}F(x)max{times(T)},满足 TTT 是 S…...

Mariadb10.5基于同服务器多实例主从配置
本次部署环境:Centos8stream 本次部署mariadb版本: mariadb:10.5 本次部署方式:rpm包直接安装,并通过systemd直接托管 可以参考 /usr/lib/systemd/system/mariadb.service 该文件 # Multi instance version of mariadb. For i…...

linux 修改主机名称
1、hostname命令进行临时更改 如果只需要临时更改主机名,可以使用hostname命令: sudo hostname <new-hostname> 例如: 只需重新打开session终端,就能生效, 但是,重启计算机后会回到旧的主机名。…...

学校的地下网站(学校的地下网站1080P高清)
这个问题本身就提得有问题,为什么这么说,这是因为YouTube本身就不是一个视频网站或者说YouTube不是一个传统的视频网站!!! YouTube能够一家独大,可不仅仅是因为有了Google 这个亲爹,还有一点&am…...
勒索病毒是什么?如何防勒索病毒
勒索病毒并不是某一个病毒,而是一类病毒的统称,主要以邮件、程序、木马、网页挂马的形式进行传播,利用各种加密算法对文件进行加密,被感染者一般无法解密,必须拿到解密的私钥才有可能破解。 已知最早的勒索软件出现于 …...
SpringBoot+VUE+Axios 【链接超时】 后端正常返回结果,前端却出现错误无法接收数据
一、错误原因及解决思路 错误提示表明前端发送的请求在默认的 2500ms 超时时间内没有得到服务器的响应,导致请求失败。尝试以下方法来解决这个问题: 增加请求超时时间:可以通过配置 Axios 请求对象的 timeout 属性来增加请求的超时时间&…...

【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

快速排序的简单理解
详细描述 快速排序通过一趟排序将待排序列分割成独立的两部分,其中一部分序列的关键字均比另一部分序列的关键字小,则可分别对这两部分序列继续进行排序,以达到整个序列有序的目的。 快速排序详细的执行步骤如下: 从序列中挑出…...

短视频多平台发布软件功能详解
随着移动互联网的普及和短视频的兴起,短视频发布软件越来越受到人们的关注。短视频发布软件除了常规的短视频发布功能,还拥有智能创作、帐号绑定、短视频一键发布、视频任务管理和数据统计等一系列实用功能。下面我们将分步骤详细介绍一下这些功能。 …...

谷歌人机验证Google reCAPTCHA
reCAPTCHA是Google公司推出的一项验证服务,使用十分方便快捷,在国外许多网站上均有使用。它与许多其他的人机验证方式不同,它极少需要用户进行各种识图验证。 它的使用方式如下如所示,只需勾选复选框即可通过人机验证。 虽然简单…...

VB+ACCESS电脑销售系统的设计与实现
为了使此系统简单易学易用、功能强大、软件费用支出低、见效快等特点,我们选择Visual Basic6.0开发此系统。Visual Basic6.0起代码有效率以达到Visual c的水平。在面向对象程序设计方面,Visual Basic6.0全面支持面向对你程序设计包括数据抽象、封装、对象…...

嵌入式开发:硬件和软件越来越接近
从前,硬件和软件工程师大多生活在自己的世界里。硬件团队设计了芯片,调试了从铸造厂返回的第一批样本,让软件团队测试他们的代码。随着虚拟平台和其他可执行模型变得越来越普遍,软件团队可以在芯片制造之前开始,有时甚…...

亲测:腾讯云轻量应用服务器性能如何?
腾讯云轻量应用服务器性能评测,轻量服务器CPU主频、处理器型号、公网带宽、月流量、Ping值测速、磁盘IO读写及使用限制,轻量应用服务器CPU内存性能和标准型云服务器CVM处于同一水准,所以大家不要担心轻量应用服务器的性能,腾讯云百…...

编程语言,TIOBE 4 月榜单:黑马出现了
TIOBE 4 月榜单已经发布了,一起来看看这个月编程语言排行榜有什么变化吧! C 发展依旧迅猛 在本月榜单中,TOP 20 的变动不大,Python、C、Java 、 C 和C#依然占据前五。甚至排名顺序都和上个月一样没有变动。 同时,Rus…...

基于DSP+FPGA的机载雷达伺服控制系统(二)电源仿真
板级电源分配网络的分析与仿真在硬件电路设计中,电源系统的设计是关键步骤之一,良好的电源系统为电路板 上各种信号的传输提供了保障。本章将研究电源完整性的相关问题,并提出一系列改 进电源质量的措施。 3.1 电源完整性 电源完整性…...

SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...