杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言
2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国自主的发明专利技术,商用必须获得授权,可提供linux(麒麟、鸿蒙)、x64、riscv、ARM等库,可在GPU上实现视频清晰化处理。在相同的尺寸下加权概率模型优化后的效果:
效率方面还不错,一张1080P的图像大概能在1秒左右运算完毕。如果采用多线程完全可以在GPU上实现多帧优化。上面相关参数设置的比较夸张,实际情况下可以根据个人感觉进行设置。
二、测试程序
int main() { // 3ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];int i, length;ImageEnhanced imageEnhanced;// 设置对应的参数imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 7; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 3; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "xxxx"; // xxxx为BMP图像的名称sprintf_s(url1, 200, "D:\\%s.bmp", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_BMPFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时,包括了bmp图像读写和运算部分printf("运算总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
三、vs2019下引用的方法
新建一个控制台项目,然后右击:
然后新建一个main.cpp
#include "WJLImageEnhancement.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <time.h>
#include <math.h>
using namespace std;
#ifdef WIN32
#define inline __inline
#endif // WIN32int main() { // 4ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];ImageEnhanced imageEnhanced;// 设置对应的参数,根据个人喜好设置imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 5; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 2; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "heye"; // jpg的文件名sprintf_s(url1, 200, "D:\\%s.jpg", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_JPGFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时printf("变换算法总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
比如下面的效果图:
控制台运行时间:
然后比较两张图的效果如下:
参数不同将产生不同的效果:
通过测试,各参数的设置取值范围为:
在杰林码超分辨率的算法程序内,主要是ImageEnhanced结构体的参数直接影响到图像输出的质量。
参数名称 | 取值范围 | 功能说明 |
---|---|---|
magnification | 0-3 | 尺寸放大参数,0表示不放大,1代表图像放大(1+1)(1+1)=4倍,2代表图像放大(2+1)(2+1)=9倍,一般情况下1080P放大到4K输入1即可,一般设置为0-2 |
jielin_ratio | 0-49 | 杰林码算法的前景背景像素分离的核心参数,越接近0获得的像素块越接近纹理背景,越接近49获得的像素块越接近前景,通过参数设置把图像分割成为前景像素块和背景像素块,属于频率变换算法的一种,一般设置为15-35 |
contour_size | 4-32 | 这个是以块为单位的轮廓预测参数,一般情况下设置为15,越小效率越高,但是轮廓预测的越不准确,一般设置为15-24 |
foreground_clear_size | 1-16 | 前景像素块内的连续像素个数,此值越大运算越慢,前景和背景的轮廓越清晰,一般设置为1-8 |
background_clear_size | 1-8 | 背景纹理预测的连续像素个数,此值越大运算越慢,纹理越清晰,一般设置为1-3 |
相关文章:

杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言 2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国…...

在three.js中废置对象
基于three.js子如何废置对象(How to dispose of objects) 前言: 为了提高性能,并避免应用程序中的内存泄露,一个重要的方面是废置未使用的类库实体。 每当创建一个three.js中的实例时,都会分配一定数量的内存。然而,three.js会创建在渲染中所必需的特定对象, 例如几何…...

Java中的String类真的不可变吗?
其实在Java中,String类被final修饰,主要是为了保证字符串的不可变性,进而保证了它的安全性。那么final到底是怎么保证字符串安全性的呢?接下来就让我们一起来看看吧。 一. final的作用 1. final关键词修饰的类不可以被其他类继…...

电脑重装了系统开不了机怎么办?
我们的电脑办公用久后也会出现故障问题,例如卡顿反应慢等等,这时候就要进行重装系统了,但是很多小伙伴重装系统后会出现开不了机的问题,其实我们比较常见的也就是电脑重装系统开不了机的情况。有很多小伙伴反映自己不知道应该怎么…...
SPOJ-NSUBSTR - Substrings(SAM求所有长度子串的最大出现次数)
NSUBSTR - Substrings 题面翻译 你得到了一个最多由 250000250000250000 个小写拉丁字母组成的字符串 SSS。定义 F(x)F(x)F(x) 为 SSS 的某些长度为 xxx 的子串在 SSS 中的最大出现次数。即 F(x)max{times(T)}F(x)max\{times(T)\}F(x)max{times(T)},满足 TTT 是 S…...

Mariadb10.5基于同服务器多实例主从配置
本次部署环境:Centos8stream 本次部署mariadb版本: mariadb:10.5 本次部署方式:rpm包直接安装,并通过systemd直接托管 可以参考 /usr/lib/systemd/system/mariadb.service 该文件 # Multi instance version of mariadb. For i…...

linux 修改主机名称
1、hostname命令进行临时更改 如果只需要临时更改主机名,可以使用hostname命令: sudo hostname <new-hostname> 例如: 只需重新打开session终端,就能生效, 但是,重启计算机后会回到旧的主机名。…...

学校的地下网站(学校的地下网站1080P高清)
这个问题本身就提得有问题,为什么这么说,这是因为YouTube本身就不是一个视频网站或者说YouTube不是一个传统的视频网站!!! YouTube能够一家独大,可不仅仅是因为有了Google 这个亲爹,还有一点&am…...
勒索病毒是什么?如何防勒索病毒
勒索病毒并不是某一个病毒,而是一类病毒的统称,主要以邮件、程序、木马、网页挂马的形式进行传播,利用各种加密算法对文件进行加密,被感染者一般无法解密,必须拿到解密的私钥才有可能破解。 已知最早的勒索软件出现于 …...
SpringBoot+VUE+Axios 【链接超时】 后端正常返回结果,前端却出现错误无法接收数据
一、错误原因及解决思路 错误提示表明前端发送的请求在默认的 2500ms 超时时间内没有得到服务器的响应,导致请求失败。尝试以下方法来解决这个问题: 增加请求超时时间:可以通过配置 Axios 请求对象的 timeout 属性来增加请求的超时时间&…...

【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

快速排序的简单理解
详细描述 快速排序通过一趟排序将待排序列分割成独立的两部分,其中一部分序列的关键字均比另一部分序列的关键字小,则可分别对这两部分序列继续进行排序,以达到整个序列有序的目的。 快速排序详细的执行步骤如下: 从序列中挑出…...

短视频多平台发布软件功能详解
随着移动互联网的普及和短视频的兴起,短视频发布软件越来越受到人们的关注。短视频发布软件除了常规的短视频发布功能,还拥有智能创作、帐号绑定、短视频一键发布、视频任务管理和数据统计等一系列实用功能。下面我们将分步骤详细介绍一下这些功能。 …...

谷歌人机验证Google reCAPTCHA
reCAPTCHA是Google公司推出的一项验证服务,使用十分方便快捷,在国外许多网站上均有使用。它与许多其他的人机验证方式不同,它极少需要用户进行各种识图验证。 它的使用方式如下如所示,只需勾选复选框即可通过人机验证。 虽然简单…...

VB+ACCESS电脑销售系统的设计与实现
为了使此系统简单易学易用、功能强大、软件费用支出低、见效快等特点,我们选择Visual Basic6.0开发此系统。Visual Basic6.0起代码有效率以达到Visual c的水平。在面向对象程序设计方面,Visual Basic6.0全面支持面向对你程序设计包括数据抽象、封装、对象…...

嵌入式开发:硬件和软件越来越接近
从前,硬件和软件工程师大多生活在自己的世界里。硬件团队设计了芯片,调试了从铸造厂返回的第一批样本,让软件团队测试他们的代码。随着虚拟平台和其他可执行模型变得越来越普遍,软件团队可以在芯片制造之前开始,有时甚…...

亲测:腾讯云轻量应用服务器性能如何?
腾讯云轻量应用服务器性能评测,轻量服务器CPU主频、处理器型号、公网带宽、月流量、Ping值测速、磁盘IO读写及使用限制,轻量应用服务器CPU内存性能和标准型云服务器CVM处于同一水准,所以大家不要担心轻量应用服务器的性能,腾讯云百…...

编程语言,TIOBE 4 月榜单:黑马出现了
TIOBE 4 月榜单已经发布了,一起来看看这个月编程语言排行榜有什么变化吧! C 发展依旧迅猛 在本月榜单中,TOP 20 的变动不大,Python、C、Java 、 C 和C#依然占据前五。甚至排名顺序都和上个月一样没有变动。 同时,Rus…...

基于DSP+FPGA的机载雷达伺服控制系统(二)电源仿真
板级电源分配网络的分析与仿真在硬件电路设计中,电源系统的设计是关键步骤之一,良好的电源系统为电路板 上各种信号的传输提供了保障。本章将研究电源完整性的相关问题,并提出一系列改 进电源质量的措施。 3.1 电源完整性 电源完整性…...

SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...