当前位置: 首页 > news >正文

杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)

一、前言

2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国自主的发明专利技术,商用必须获得授权,可提供linux(麒麟、鸿蒙)、x64、riscv、ARM等库,可在GPU上实现视频清晰化处理。在相同的尺寸下加权概率模型优化后的效果:
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
效率方面还不错,一张1080P的图像大概能在1秒左右运算完毕。如果采用多线程完全可以在GPU上实现多帧优化。上面相关参数设置的比较夸张,实际情况下可以根据个人感觉进行设置。

二、测试程序

int main() { // 3ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];int i, length;ImageEnhanced imageEnhanced;// 设置对应的参数imageEnhanced.magnification = 0;          // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15;          // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35;          // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 7;  // 前景清晰化的像素范围imageEnhanced.background_clear_size = 3;  // 背景清晰化的像素范围imageEnhanced.threshold = 13;             // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "xxxx";   // xxxx为BMP图像的名称sprintf_s(url1, 200, "D:\\%s.bmp", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_BMPFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时,包括了bmp图像读写和运算部分printf("运算总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}

三、vs2019下引用的方法

新建一个控制台项目,然后右击:
在这里插入图片描述
在这里插入图片描述
然后新建一个main.cpp

#include "WJLImageEnhancement.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <time.h>
#include <math.h>
using namespace std;
#ifdef WIN32
#define  inline __inline
#endif // WIN32int main() { // 4ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];ImageEnhanced imageEnhanced;// 设置对应的参数,根据个人喜好设置imageEnhanced.magnification = 0;          // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15;          // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35;          // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 5;  // 前景清晰化的像素范围imageEnhanced.background_clear_size = 2;  // 背景清晰化的像素范围imageEnhanced.threshold = 13;             // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "heye";  // jpg的文件名sprintf_s(url1, 200, "D:\\%s.jpg", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_JPGFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时printf("变换算法总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}

比如下面的效果图:
在这里插入图片描述
控制台运行时间:
在这里插入图片描述
然后比较两张图的效果如下:
在这里插入图片描述
参数不同将产生不同的效果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过测试,各参数的设置取值范围为:
在杰林码超分辨率的算法程序内,主要是ImageEnhanced结构体的参数直接影响到图像输出的质量。

参数名称取值范围功能说明
magnification0-3尺寸放大参数,0表示不放大,1代表图像放大(1+1)(1+1)=4倍,2代表图像放大(2+1)(2+1)=9倍,一般情况下1080P放大到4K输入1即可,一般设置为0-2
jielin_ratio0-49杰林码算法的前景背景像素分离的核心参数,越接近0获得的像素块越接近纹理背景,越接近49获得的像素块越接近前景,通过参数设置把图像分割成为前景像素块和背景像素块,属于频率变换算法的一种,一般设置为15-35
contour_size4-32这个是以块为单位的轮廓预测参数,一般情况下设置为15,越小效率越高,但是轮廓预测的越不准确,一般设置为15-24
foreground_clear_size1-16前景像素块内的连续像素个数,此值越大运算越慢,前景和背景的轮廓越清晰,一般设置为1-8
background_clear_size1-8背景纹理预测的连续像素个数,此值越大运算越慢,纹理越清晰,一般设置为1-3

相关文章:

杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)

一、前言 2023-03-23我发布了基于加权概率模型&#xff08;杰林码的理论模型&#xff09;的图像颜色增强和轮廓预测的应用方法。效果还不太明显&#xff0c;于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll&#xff0c;本文中的算法属于我国…...

在three.js中废置对象

基于three.js子如何废置对象(How to dispose of objects) 前言: 为了提高性能,并避免应用程序中的内存泄露,一个重要的方面是废置未使用的类库实体。 每当创建一个three.js中的实例时,都会分配一定数量的内存。然而,three.js会创建在渲染中所必需的特定对象, 例如几何…...

Java中的String类真的不可变吗?

其实在Java中&#xff0c;String类被final修饰&#xff0c;主要是为了保证字符串的不可变性&#xff0c;进而保证了它的安全性。那么final到底是怎么保证字符串安全性的呢&#xff1f;接下来就让我们一起来看看吧。 一. final的作用 1. final关键词修饰的类不可以被其他类继…...

电脑重装了系统开不了机怎么办?

我们的电脑办公用久后也会出现故障问题&#xff0c;例如卡顿反应慢等等&#xff0c;这时候就要进行重装系统了&#xff0c;但是很多小伙伴重装系统后会出现开不了机的问题&#xff0c;其实我们比较常见的也就是电脑重装系统开不了机的情况。有很多小伙伴反映自己不知道应该怎么…...

SPOJ-NSUBSTR - Substrings(SAM求所有长度子串的最大出现次数)

NSUBSTR - Substrings 题面翻译 你得到了一个最多由 250000250000250000 个小写拉丁字母组成的字符串 SSS。定义 F(x)F(x)F(x) 为 SSS 的某些长度为 xxx 的子串在 SSS 中的最大出现次数。即 F(x)max{times(T)}F(x)max\{times(T)\}F(x)max{times(T)}&#xff0c;满足 TTT 是 S…...

Mariadb10.5基于同服务器多实例主从配置

本次部署环境&#xff1a;Centos8stream 本次部署mariadb版本&#xff1a; mariadb:10.5 本次部署方式&#xff1a;rpm包直接安装&#xff0c;并通过systemd直接托管 可以参考 /usr/lib/systemd/system/mariadb.service 该文件 # Multi instance version of mariadb. For i…...

linux 修改主机名称

1、hostname命令进行临时更改 如果只需要临时更改主机名&#xff0c;可以使用hostname命令&#xff1a; sudo hostname <new-hostname> 例如&#xff1a; 只需重新打开session终端&#xff0c;就能生效&#xff0c; 但是&#xff0c;重启计算机后会回到旧的主机名。…...

学校的地下网站(学校的地下网站1080P高清)

这个问题本身就提得有问题&#xff0c;为什么这么说&#xff0c;这是因为YouTube本身就不是一个视频网站或者说YouTube不是一个传统的视频网站&#xff01;&#xff01;&#xff01; YouTube能够一家独大&#xff0c;可不仅仅是因为有了Google 这个亲爹&#xff0c;还有一点&am…...

勒索病毒是什么?如何防勒索病毒

勒索病毒并不是某一个病毒&#xff0c;而是一类病毒的统称&#xff0c;主要以邮件、程序、木马、网页挂马的形式进行传播&#xff0c;利用各种加密算法对文件进行加密&#xff0c;被感染者一般无法解密&#xff0c;必须拿到解密的私钥才有可能破解。 已知最早的勒索软件出现于 …...

SpringBoot+VUE+Axios 【链接超时】 后端正常返回结果,前端却出现错误无法接收数据

一、错误原因及解决思路 错误提示表明前端发送的请求在默认的 2500ms 超时时间内没有得到服务器的响应&#xff0c;导致请求失败。尝试以下方法来解决这个问题&#xff1a; 增加请求超时时间&#xff1a;可以通过配置 Axios 请求对象的 timeout 属性来增加请求的超时时间&…...

【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

快速排序的简单理解

详细描述 快速排序通过一趟排序将待排序列分割成独立的两部分&#xff0c;其中一部分序列的关键字均比另一部分序列的关键字小&#xff0c;则可分别对这两部分序列继续进行排序&#xff0c;以达到整个序列有序的目的。 快速排序详细的执行步骤如下&#xff1a; 从序列中挑出…...

短视频多平台发布软件功能详解

随着移动互联网的普及和短视频的兴起&#xff0c;短视频发布软件越来越受到人们的关注。短视频发布软件除了常规的短视频发布功能&#xff0c;还拥有智能创作、帐号绑定、短视频一键发布、视频任务管理和数据统计等一系列实用功能。下面我们将分步骤详细介绍一下这些功能。   …...

谷歌人机验证Google reCAPTCHA

reCAPTCHA是Google公司推出的一项验证服务&#xff0c;使用十分方便快捷&#xff0c;在国外许多网站上均有使用。它与许多其他的人机验证方式不同&#xff0c;它极少需要用户进行各种识图验证。 它的使用方式如下如所示&#xff0c;只需勾选复选框即可通过人机验证。 虽然简单…...

VB+ACCESS电脑销售系统的设计与实现

为了使此系统简单易学易用、功能强大、软件费用支出低、见效快等特点&#xff0c;我们选择Visual Basic6.0开发此系统。Visual Basic6.0起代码有效率以达到Visual c的水平。在面向对象程序设计方面&#xff0c;Visual Basic6.0全面支持面向对你程序设计包括数据抽象、封装、对象…...

嵌入式开发:硬件和软件越来越接近

从前&#xff0c;硬件和软件工程师大多生活在自己的世界里。硬件团队设计了芯片&#xff0c;调试了从铸造厂返回的第一批样本&#xff0c;让软件团队测试他们的代码。随着虚拟平台和其他可执行模型变得越来越普遍&#xff0c;软件团队可以在芯片制造之前开始&#xff0c;有时甚…...

亲测:腾讯云轻量应用服务器性能如何?

腾讯云轻量应用服务器性能评测&#xff0c;轻量服务器CPU主频、处理器型号、公网带宽、月流量、Ping值测速、磁盘IO读写及使用限制&#xff0c;轻量应用服务器CPU内存性能和标准型云服务器CVM处于同一水准&#xff0c;所以大家不要担心轻量应用服务器的性能&#xff0c;腾讯云百…...

编程语言,TIOBE 4 月榜单:黑马出现了

TIOBE 4 月榜单已经发布了&#xff0c;一起来看看这个月编程语言排行榜有什么变化吧&#xff01; C 发展依旧迅猛 在本月榜单中&#xff0c;TOP 20 的变动不大&#xff0c;Python、C、Java 、 C 和C#依然占据前五。甚至排名顺序都和上个月一样没有变动。 同时&#xff0c;Rus…...

基于DSP+FPGA的机载雷达伺服控制系统(二)电源仿真

板级电源分配网络的分析与仿真在硬件电路设计中&#xff0c;电源系统的设计是关键步骤之一&#xff0c;良好的电源系统为电路板 上各种信号的传输提供了保障。本章将研究电源完整性的相关问题&#xff0c;并提出一系列改 进电源质量的措施。 3.1 电源完整性 电源完整性&#xf…...

SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】

文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...