杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言
2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国自主的发明专利技术,商用必须获得授权,可提供linux(麒麟、鸿蒙)、x64、riscv、ARM等库,可在GPU上实现视频清晰化处理。在相同的尺寸下加权概率模型优化后的效果:





效率方面还不错,一张1080P的图像大概能在1秒左右运算完毕。如果采用多线程完全可以在GPU上实现多帧优化。上面相关参数设置的比较夸张,实际情况下可以根据个人感觉进行设置。
二、测试程序
int main() { // 3ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];int i, length;ImageEnhanced imageEnhanced;// 设置对应的参数imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 7; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 3; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "xxxx"; // xxxx为BMP图像的名称sprintf_s(url1, 200, "D:\\%s.bmp", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_BMPFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时,包括了bmp图像读写和运算部分printf("运算总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
三、vs2019下引用的方法
新建一个控制台项目,然后右击:


然后新建一个main.cpp
#include "WJLImageEnhancement.h"
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <time.h>
#include <math.h>
using namespace std;
#ifdef WIN32
#define inline __inline
#endif // WIN32int main() { // 4ULONGLONG t1, t2;WJLImageEnhancement wie;int err;char url1[200], url2[200];ImageEnhanced imageEnhanced;// 设置对应的参数,根据个人喜好设置imageEnhanced.magnification = 0; // 图像放大尺寸,0为不放大仅做清晰化处理imageEnhanced.contour_size = 15; // 轮廓像素范围,影响清晰度和运算效率,越大越清晰但运算所需时间越长imageEnhanced.jielin_ratio = 35; // 杰林码系数0-49共50种值,越接近0则可以分解出背景的子图,越接近50则可以分解出前景子图imageEnhanced.foreground_clear_size = 5; // 前景清晰化的像素范围imageEnhanced.background_clear_size = 2; // 背景清晰化的像素范围imageEnhanced.threshold = 13; // 相邻像素值之差的绝对阈值,当绝对值大于等于threshold时属于需要清晰化的像素值,配合foreground_clear_size和background_clear_size同时使用的const char* fileName = "heye"; // jpg的文件名sprintf_s(url1, 200, "D:\\%s.jpg", fileName);sprintf_s(url2, 200, "D:\\%s-%d-%d-%d-%d-%d.bmp", fileName, imageEnhanced.magnification, imageEnhanced.jielin_ratio, imageEnhanced.contour_size, imageEnhanced.foreground_clear_size, imageEnhanced.background_clear_size);// 把灰度图像进行滤波变换t1 = GetTickCount64();err = wie.WJL_JPGFILE_ENHANCEMENT(url1, url2, &imageEnhanced);t2 = GetTickCount64();// 耗时printf("变换算法总耗时:%lld ms\n", t2 - t1);system("pause");return 0;
}
比如下面的效果图:

控制台运行时间:

然后比较两张图的效果如下:

参数不同将产生不同的效果:



通过测试,各参数的设置取值范围为:
在杰林码超分辨率的算法程序内,主要是ImageEnhanced结构体的参数直接影响到图像输出的质量。
| 参数名称 | 取值范围 | 功能说明 |
|---|---|---|
| magnification | 0-3 | 尺寸放大参数,0表示不放大,1代表图像放大(1+1)(1+1)=4倍,2代表图像放大(2+1)(2+1)=9倍,一般情况下1080P放大到4K输入1即可,一般设置为0-2 |
| jielin_ratio | 0-49 | 杰林码算法的前景背景像素分离的核心参数,越接近0获得的像素块越接近纹理背景,越接近49获得的像素块越接近前景,通过参数设置把图像分割成为前景像素块和背景像素块,属于频率变换算法的一种,一般设置为15-35 |
| contour_size | 4-32 | 这个是以块为单位的轮廓预测参数,一般情况下设置为15,越小效率越高,但是轮廓预测的越不准确,一般设置为15-24 |
| foreground_clear_size | 1-16 | 前景像素块内的连续像素个数,此值越大运算越慢,前景和背景的轮廓越清晰,一般设置为1-8 |
| background_clear_size | 1-8 | 背景纹理预测的连续像素个数,此值越大运算越慢,纹理越清晰,一般设置为1-3 |
相关文章:
杰林码图像增强算法——超分辨率、图像放大、轮廓和色彩强化算法(二)
一、前言 2023-03-23我发布了基于加权概率模型(杰林码的理论模型)的图像颜色增强和轮廓预测的应用方法。效果还不太明显,于是我又花了2周的时间进行了技术优化。下面仅提供了x86下的BMP和JPG对应的lib和dll,本文中的算法属于我国…...
在three.js中废置对象
基于three.js子如何废置对象(How to dispose of objects) 前言: 为了提高性能,并避免应用程序中的内存泄露,一个重要的方面是废置未使用的类库实体。 每当创建一个three.js中的实例时,都会分配一定数量的内存。然而,three.js会创建在渲染中所必需的特定对象, 例如几何…...
Java中的String类真的不可变吗?
其实在Java中,String类被final修饰,主要是为了保证字符串的不可变性,进而保证了它的安全性。那么final到底是怎么保证字符串安全性的呢?接下来就让我们一起来看看吧。 一. final的作用 1. final关键词修饰的类不可以被其他类继…...
电脑重装了系统开不了机怎么办?
我们的电脑办公用久后也会出现故障问题,例如卡顿反应慢等等,这时候就要进行重装系统了,但是很多小伙伴重装系统后会出现开不了机的问题,其实我们比较常见的也就是电脑重装系统开不了机的情况。有很多小伙伴反映自己不知道应该怎么…...
SPOJ-NSUBSTR - Substrings(SAM求所有长度子串的最大出现次数)
NSUBSTR - Substrings 题面翻译 你得到了一个最多由 250000250000250000 个小写拉丁字母组成的字符串 SSS。定义 F(x)F(x)F(x) 为 SSS 的某些长度为 xxx 的子串在 SSS 中的最大出现次数。即 F(x)max{times(T)}F(x)max\{times(T)\}F(x)max{times(T)},满足 TTT 是 S…...
Mariadb10.5基于同服务器多实例主从配置
本次部署环境:Centos8stream 本次部署mariadb版本: mariadb:10.5 本次部署方式:rpm包直接安装,并通过systemd直接托管 可以参考 /usr/lib/systemd/system/mariadb.service 该文件 # Multi instance version of mariadb. For i…...
linux 修改主机名称
1、hostname命令进行临时更改 如果只需要临时更改主机名,可以使用hostname命令: sudo hostname <new-hostname> 例如: 只需重新打开session终端,就能生效, 但是,重启计算机后会回到旧的主机名。…...
学校的地下网站(学校的地下网站1080P高清)
这个问题本身就提得有问题,为什么这么说,这是因为YouTube本身就不是一个视频网站或者说YouTube不是一个传统的视频网站!!! YouTube能够一家独大,可不仅仅是因为有了Google 这个亲爹,还有一点&am…...
勒索病毒是什么?如何防勒索病毒
勒索病毒并不是某一个病毒,而是一类病毒的统称,主要以邮件、程序、木马、网页挂马的形式进行传播,利用各种加密算法对文件进行加密,被感染者一般无法解密,必须拿到解密的私钥才有可能破解。 已知最早的勒索软件出现于 …...
SpringBoot+VUE+Axios 【链接超时】 后端正常返回结果,前端却出现错误无法接收数据
一、错误原因及解决思路 错误提示表明前端发送的请求在默认的 2500ms 超时时间内没有得到服务器的响应,导致请求失败。尝试以下方法来解决这个问题: 增加请求超时时间:可以通过配置 Axios 请求对象的 timeout 属性来增加请求的超时时间&…...
【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
快速排序的简单理解
详细描述 快速排序通过一趟排序将待排序列分割成独立的两部分,其中一部分序列的关键字均比另一部分序列的关键字小,则可分别对这两部分序列继续进行排序,以达到整个序列有序的目的。 快速排序详细的执行步骤如下: 从序列中挑出…...
短视频多平台发布软件功能详解
随着移动互联网的普及和短视频的兴起,短视频发布软件越来越受到人们的关注。短视频发布软件除了常规的短视频发布功能,还拥有智能创作、帐号绑定、短视频一键发布、视频任务管理和数据统计等一系列实用功能。下面我们将分步骤详细介绍一下这些功能。 …...
谷歌人机验证Google reCAPTCHA
reCAPTCHA是Google公司推出的一项验证服务,使用十分方便快捷,在国外许多网站上均有使用。它与许多其他的人机验证方式不同,它极少需要用户进行各种识图验证。 它的使用方式如下如所示,只需勾选复选框即可通过人机验证。 虽然简单…...
VB+ACCESS电脑销售系统的设计与实现
为了使此系统简单易学易用、功能强大、软件费用支出低、见效快等特点,我们选择Visual Basic6.0开发此系统。Visual Basic6.0起代码有效率以达到Visual c的水平。在面向对象程序设计方面,Visual Basic6.0全面支持面向对你程序设计包括数据抽象、封装、对象…...
嵌入式开发:硬件和软件越来越接近
从前,硬件和软件工程师大多生活在自己的世界里。硬件团队设计了芯片,调试了从铸造厂返回的第一批样本,让软件团队测试他们的代码。随着虚拟平台和其他可执行模型变得越来越普遍,软件团队可以在芯片制造之前开始,有时甚…...
亲测:腾讯云轻量应用服务器性能如何?
腾讯云轻量应用服务器性能评测,轻量服务器CPU主频、处理器型号、公网带宽、月流量、Ping值测速、磁盘IO读写及使用限制,轻量应用服务器CPU内存性能和标准型云服务器CVM处于同一水准,所以大家不要担心轻量应用服务器的性能,腾讯云百…...
编程语言,TIOBE 4 月榜单:黑马出现了
TIOBE 4 月榜单已经发布了,一起来看看这个月编程语言排行榜有什么变化吧! C 发展依旧迅猛 在本月榜单中,TOP 20 的变动不大,Python、C、Java 、 C 和C#依然占据前五。甚至排名顺序都和上个月一样没有变动。 同时,Rus…...
基于DSP+FPGA的机载雷达伺服控制系统(二)电源仿真
板级电源分配网络的分析与仿真在硬件电路设计中,电源系统的设计是关键步骤之一,良好的电源系统为电路板 上各种信号的传输提供了保障。本章将研究电源完整性的相关问题,并提出一系列改 进电源质量的措施。 3.1 电源完整性 电源完整性…...
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
文章目录前言1、分布式情况下如何加锁2、具体实现过程3、测试3.1 一个服务按照多个端口同时启动3.2 使用jmeter进行压测前言 上一篇实现了单体应用下如何上锁,这一篇主要说明如何在分布式场景下上锁 上一篇地址:加锁 1、分布式情况下如何加锁 需要注意的点是: 在上锁和释放…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
