ElasticSearch集群搭建
一、ElasticSearch 集群
1.1 搭建集群
Elasticsearch如果做集群的话Master节点至少三台服务器或者三个Master实例加入相同集群,三个Master节点最多只能故障一台Master节点,如果故障两个Master节点,Elasticsearch将无法组成集群.会报错,Kibana也无法启动,因为Kibana无法获取集群中的节点信息。
由于,我们使用只有一台虚拟机,所以我们在虚拟机中安装三个ES实例,搭建伪集群,而ES启动比较耗内存,所以先设置虚拟机的内存3G和CPU个数4个
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-d6vNaaI0-1681918577172)(.\imgs\1575626474666.png)]
1.1.1 整体步骤
步骤如下:
-
拷贝opt目录下的elasticsearch-7.4.0安装包3个,分别命名:
elasticsearch-7.4.0-itcast1
elasticsearch-7.4.0-itcast2
elasticsearch-7.4.0-itcast3
-
然后修改elasticsearch.yml文件。
-
然后启动itcast1、itcast2、itcast3三个节点。
-
打开浏览器输⼊:http://192.168.149.135:9200/_cat/health?v ,如果返回的node.total是3,代表集 群搭建成功
在此,需要我们特别注意的是,像本文这样单服务器多节点( 3 个节点)的情况,仅供测试使用,集群环境如下:
cluster name | node name | IP Addr | http端口 / 通信端口 |
itcast-es | itcast1 | 192.168.149.135 | 9201 / 9700 |
itcast-es | itcast2 | 192.168.149.135 | 9202 / 9800 |
itcast-es | itcast3 | 192.168.149.135 | 9203 / 9900 |
1.1.2 拷贝副本
拷贝opt目录下的elasticsearch-7.4.0安装包3个,打开虚拟机到opt目录
执行 拷贝三份
cd /opt
cp -r elasticsearch-7.4.0 elasticsearch-7.4.0-itcast1
cp -r elasticsearch-7.4.0 elasticsearch-7.4.0-itcast2
cp -r elasticsearch-7.4.0 elasticsearch-7.4.0-itcast3
1.1. 3 修改配置文件
1) 创建日志目录
cd /opt
mkdir logs
mkdir data
# 授权给itheima用户
chown -R itheima:itheima ./logs
chown -R itheima:itheima ./datachown -R itheima:itheima ./elasticsearch-7.4.0-itcast1
chown -R itheima:itheima ./elasticsearch-7.4.0-itcast2
chown -R itheima:itheima ./elasticsearch-7.4.0-itcast3
打开elasticsearch.yml配置,分别配置下面三个节点的配置文件
vim /opt/elasticsearch-7.4.0-itcast1/config/elasticsearch.yml
vim /opt/elasticsearch-7.4.0-itcast2/config/elasticsearch.yml
vim /opt/elasticsearch-7.4.0-itcast3/config/elasticsearch.yml
2) 下面是elasticsearch-7.4.0-itcast1配置文件
cluster.name: itcast-es
node.name: itcast-1
node.master: true
node.data: true
node.max_local_storage_nodes: 3
network.host: 0.0.0.0
http.port: 9201
transport.tcp.port: 9700
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
path.data: /opt/data
path.logs: /opt/logs
#集群名称
cluster.name: itcast-es
#节点名称
node.name: itcast-1
#是不是有资格主节点
node.master: true
#是否存储数据
node.data: true
#最大集群节点数
node.max_local_storage_nodes: 3
#ip地址
network.host: 0.0.0.0
#端口
http.port: 9201
#内部节点之间沟通端口
transport.tcp.port: 9700
#es7.x 之后新增的配置,节点发现
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
#es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
#数据和存储路径
path.data: /opt/data
path.logs: /opt/logs
3) 下面是elasticsearch-7.4.0-itcast2配置文件
cluster.name: itcast-es
node.name: itcast-2
node.master: true
node.data: true
node.max_local_storage_nodes: 3
network.host: 0.0.0.0
http.port: 9202
transport.tcp.port: 9800
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
path.data: /opt/data
path.logs: /opt/logs
#集群名称
cluster.name: itcast-es
#节点名称
node.name: itcast-2
#是不是有资格主节点
node.master: true
#是否存储数据
node.data: true
#最大集群节点数
node.max_local_storage_nodes: 3
#ip地址
network.host: 0.0.0.0
#端口
http.port: 9202
#内部节点之间沟通端口
transport.tcp.port: 9800
#es7.x 之后新增的配置,节点发现
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
#es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
#数据和存储路径
path.data: /opt/data
path.logs: /opt/logs
4)、下面是elasticsearch-7.4.0-itcast3 配置文件
cluster.name: itcast-es
node.name: itcast-3
node.master: true
node.data: true
node.max_local_storage_nodes: 3
network.host: 0.0.0.0
http.port: 9203
transport.tcp.port: 9900
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
path.data: /opt/data
path.logs: /opt/logs
#集群名称
cluster.name: itcast-es
#节点名称
node.name: itcast-3
#是不是有资格主节点
node.master: true
#是否存储数据
node.data: true
#最大集群节点数
node.max_local_storage_nodes: 3
#ip地址
network.host: 0.0.0.0
#端口
http.port: 9203
#内部节点之间沟通端口
transport.tcp.port: 9900
#es7.x 之后新增的配置,节点发现
discovery.seed_hosts: ["localhost:9700","localhost:9800","localhost:9900"]
#es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举master
cluster.initial_master_nodes: ["itcast-1", "itcast-2","itcast-3"]
#数据和存储路径
path.data: /opt/data
path.logs: /opt/logs
1.1.4 执行授权
在root用户下执行
chown -R itheima:itheima /opt/elasticsearch-7.4.0-itcast1
chown -R itheima:itheima /opt/elasticsearch-7.4.0-itcast2
chown -R itheima:itheima /opt/elasticsearch-7.4.0-itcast3
如果有的日志文件授权失败,可使用(也是在root下执行)
cd /opt/elasticsearch-7.4.0-itcast1/logs
chown -R itheima:itheima ./*
cd /opt/elasticsearch-7.4.0-itcast2/logs
chown -R itheima:itheima ./*
cd /opt/elasticsearch-7.4.0-itcast3/logs
chown -R itheima:itheima ./*
1.1.5 启动三个节点
启动之前,设置ES的JVM占用内存参数,防止内存不足错误
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Oc0nhhQh-1681918577174)(imgs\1575630754009.png)]
vim /opt/elasticsearch-7.4.0-itcast1/bin/elasticsearch
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DiKe1b1f-1681918577176)(imgs\1575631078654.png)]
可以发现,ES启动时加载/config/jvm.options文件
vim /opt/elasticsearch-7.4.0-itcast1/config/jvm.options
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R36YVXCY-1681918577177)(imgs\1575630948133.png)]
默认情况下,ES启动JVM最小内存1G,最大内存1G
-xms:最小内存
-xmx:最大内存
修改为256m
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Aad42dmC-1681918577179)(imgs\1575631033297.png)]
启动成功访问节点一:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FSrQj2oU-1681918577180)(imgs\1575628494844.png)]
可以从日志中看到:master not discovered yet。还没有发现主节点
访问集群状态信息 http://192.168.149.135:9201/_cat/health?v 不成功
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FSY3Mwdu-1681918577182)(imgs\1575628567827.png)]
启动成功访问节点二:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NXutke3S-1681918577183)(imgs\1575628735672.png)]
可以从日志中看到:master not discovered yet。还没有发现主节点master node changed.已经选举出主节点itcast-2
访问集群状态信息 http://192.168.149.135:9201/_cat/health?v 成功
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QFjtsWBu-1681918577184)(imgs\1575628812009.png)]
健康状况结果解释:cluster 集群名称
status 集群状态 green代表健康;yellow代表分配了所有主分片,但至少缺少一个副本,此时集群数据仍旧完整;red 代表部分主分片不可用,可能已经丢失数据。
node.total代表在线的节点总数量
node.data代表在线的数据节点的数量
shards 存活的分片数量
pri 存活的主分片数量 正常情况下 shards的数量是pri的两倍。
relo迁移中的分片数量,正常情况为 0
init 初始化中的分片数量 正常情况为 0
unassign未分配的分片 正常情况为 0
pending_tasks准备中的任务,任务指迁移分片等 正常情况为 0
max_task_wait_time任务最长等待时间
active_shards_percent正常分片百分比 正常情况为 100%
启动成功访问节点三
访问集群状态信息 http://192.168.149.135:9201/_cat/health?v 成功
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sGVQMVej-1681918577186)(imgs\1575628972101.png)]
可以看到节点已经变为3个,至此,ES集群已经搭建成功~
1.2 使用Kibana配置和管理集群
1.2.1 集群配置
因为之前我们在单机演示的时候也使用到了Kibana,我们先复制出来一个Kibana,然后修改它的集群配置
cd /opt/
cp -r kibana-7.4.0-linux-x86_64 kibana-7.4.0-linux-x86_64-cluster
# 由于 kibana 中文件众多,此处会等待大约1分钟的时间
修改Kibana的集群配置
vim kibana-7.4.0-linux-x86_64-cluster/config/kibana.yml
加入下面的配置
elasticsearch.hosts: ["http://localhost:9201","http://localhost:9202","http://localhost:9203"]
启动Kibana
sh kibana --allow-root
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3cwufjzE-1681918577187)(imgs\1575629869248.png)]
1.2.2 管理集群
1、打开Kibana,点开 Stack Monitoring 集群监控
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CKqMc6lH-1681918577188)(imgs\1575630589113.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-80BMBsxO-1681918577189)(imgs\1575631125143.png)]
2、点击【Nodes】查看节点详细信息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KpuV5chU-1681918577190)(imgs\1575631203718.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qUf9bDy8-1681918577191)(imgs\1575631303974.png)]
在上图可以看到,第一个红框处显示【Green】,绿色,表示集群处理健康状态
第二个红框是我们集群的三个节点,注意,itcast-3旁边是星星,表示是主节点
1681918577187)]
1.2.2 管理集群
1、打开Kibana,点开 Stack Monitoring 集群监控
[外链图片转存中…(img-CKqMc6lH-1681918577188)]
[外链图片转存中…(img-80BMBsxO-1681918577189)]
2、点击【Nodes】查看节点详细信息
[外链图片转存中…(img-KpuV5chU-1681918577190)]
[外链图片转存中…(img-qUf9bDy8-1681918577191)]
在上图可以看到,第一个红框处显示【Green】,绿色,表示集群处理健康状态
第二个红框是我们集群的三个节点,注意,itcast-3旁边是星星,表示是主节点
相关文章:
ElasticSearch集群搭建
一、ElasticSearch 集群 1.1 搭建集群 Elasticsearch如果做集群的话Master节点至少三台服务器或者三个Master实例加入相同集群,三个Master节点最多只能故障一台Master节点,如果故障两个Master节点,Elasticsearch将无法组成集群.会报错&…...

【pan-sharpening 攻击:目标检测】
Adversarial pan-sharpening attacks for object detection in remote sensing (对抗性泛锐化攻击在遥感目标检测中的应用) 全色锐化是遥感系统中最常用的技术之一,其目的是将纹理丰富的PAN图像和多光谱MS图像融合,以获得纹理丰…...

nginx反向代理_负载均衡的配置
说明 两台虚拟机: 88节点是自己的虚拟机 66节点是小组成员的虚拟机,我们暂且叫同学机 tomcat端口,分别为8081和8082 总结就是: 自己虚拟机上面安装nginx和tomcat8082 同学机上安装tomcat8081 一、开始安装nginx(只安装…...

程序员随时担心被抛弃......大厂外包值不值得去?
外包”这个词经常被人提及,而且也经常被我们所“鄙夷”,很多人都在四处问:“软件外包公司到底能不能去”? 外包公司到底能不能学到真正的技术? 外包大厂能不能去? 今天就给大家详细分享下外包的利与弊 做…...
C++解释器模式实战:从设计到应用的全面指南
目录标题 第一章:解释器模式简介(Introduction to the Interpreter Pattern)1.1 模式定义(Pattern Definition)1.2 解释器模式的用途(Uses of the Interpreter Pattern) 1.3 解释器模式的优缺点…...

使用华为云免费资源训练Paddle UIE模型
一、创建虚拟环境 好习惯,首先创建单独的运行环境 conda create -n uie python3.10.9 conda activate uie 二、安装paddle框架及paddlenlp 2.1 参考官方文档安装paddle 开始使用_飞桨-源于产业实践的开源深度学习平台 首先查看自己服务器cuda版本,…...

深度学习12. CNN经典网络 VGG16
深度学习12. CNN经典网络 VGG16 一、简介1. VGG 来源2. VGG分类3. 不同模型的参数数量4. 3x3卷积核的好处5. 关于学习率调度6. 批归一化 二、VGG16层分析1. 层划分2. 参数展开过程图解3. 参数传递示例4. VGG 16各层参数数量 三、代码分析1. VGG16模型定义2. 训练3. 测试 一、简…...

Doris(3):创建用户与创建数据库并赋予权限
Doris 采用 MySQL 协议进行通信,用户可通过 MySQL client 或者 MySQL JDBC连接到 Doris 集群。选择 MySQL client 版本时建议采用5.1 之后的版本,因为 5.1 之前不能支持长度超过 16 个字符的用户名。 1 创建用户 Root 用户登录与密码修改 Doris 内置 r…...

深入浅出 Golang 内存管理
了解内存管理~ 前言: 本节课主要介绍了内存管理知识与自动内存管理机制,并对目前 Go 内存管理过程中存在的问题提出了解决方案,同时结合了上次课程学习的《Go 语言性能优化》相关知识,提供可行性的优化建议 … 自动内存管理 Go…...

基于Python的简单40例和爬虫详细讲解(文末赠书)
目录 先来看看Python40例 学习Python容易坐牢? 介绍一下什么是爬虫 1、收集数据 2、爬虫调研 3、刷流量和秒杀 二、爬虫是如何工作的? 三、爬虫与SEO优化 什么是python爬虫 Python爬虫架构 最担心的问题 本期送书 随着人工智能以及大数据的兴起…...

Vector - CAPL - CAN x 总线信息获取(续2)
继续.... 目录 ErrorFrameCount -- 错误帧数量 代码示例 ErrorFrameRate -- 错误帧速率 代码示例 ExtendedFrameCount -- 扩展帧数量 代码示例 ExtendedFrameRate -- 扩展帧速率 代码示例 ExtendedRemoteFrameCount -- 远程扩展帧数量 代码示例 ExtendedRemoteFrameRa…...
C++基础知识【8】模板
目录 一、什么是C模板? 二、函数模板 三、类模板 四、模板特化 五、模板参数 六、可变模板参数 七、模板元编程 八、嵌套模板 九、注意事项 一、什么是C模板? C模板是C编程中非常重要的一部分,它允许程序员以一种通用的方式编写代码…...

MAC-安装Java环境、JDK配置、IDEA插件推荐
背景:发现经常换电脑装环境等比较麻烦,主要还是想记录一下,不要每次安装都到处翻。。 1、下载并安装JDK 到官网下载所需的JDK:https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html 这儿下…...
Mysql如何避免常见的索引失效
Mysql索引算是非常常用了,用得好提高效率,用的不好适得其反 如何避免常见的索引失效 1.模糊查询 使用 LIKE 查询时,如果搜索表达式以通配符开头,如 %value,MySQL 就无法使用索引来加速查询,因为它无法倒序…...

SpringBoot集成Redis及问题解决
SpringBoot集成Redis 此篇文章为SpringBoot集成Redis的简单介绍,依赖、序列化操作、工具类都可以在后面的实操中直接搬运使用或者在此基础上进行改进使用 1、集成Redis 1.1、新建SpringBoot项目 新建项目这边就不一一介绍了,大家如果还有不会的可以自行…...
PyTorch 人工智能研讨会:6~7
原文:The Deep Learning with PyTorch Workshop 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心…...

AI绘图设计师Stable Diffusion成为生产力工具(五):放大并修复老照片、马赛克照片、身份证件照
S:你安装stable diffusion就是为了看小姐姐么? I :当然不是,当然是为了公司的发展谋出路~~ 预先学习: 安装webui《Windows安装Stable Diffusion WebUI及问题解决记录》。运行使用时问题《Windows使用Stable Diffusion时…...
cubase正版下载安装包-cubase正版下载v1.2.0.69 软件激活版
cubase正版下载是一款实用的音乐创作类软件。我们可以通过这款软件实现创作音乐的自由,再也不用花大价钱请别人来帮忙制作,只需自己动动手就可以轻松完成我们所想要的,这款软件做到了让每一位热爱音乐的人都可以实现自己的梦想。 cubase正版…...
Python机器学习:支持向量机
这是我读本科的时候第一个接触到的机器学习算法,但也是第一个听完就忘的。。。 他的基本思想很简单:想办法把一个样本集划成两个部分:对于空间中的样本点集合,我们找到一个超平面把这个样本点集合给分成两个部分,其中…...

矩阵和线性代数的应用
矩阵和线性代数是数学中重要的概念,它们被广泛应用于物理、工程、计算机科学、经济学等众多领域。本文将讨论矩阵和线性代数的一些基本概念以及它们在实际应用中的重要性和影响。 一、矩阵和线性代数的基本概念 矩阵是由数字组成的矩形数组。它可以表示线性方程组…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献
Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译: ### 胃肠道癌症的发病率呈上升趋势,且有年轻化倾向(Bray等人,2018&#x…...

MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

若依项目部署--传统架构--未完待续
若依项目介绍 项目源码获取 #Git工具下载 dnf -y install git #若依项目获取 git clone https://gitee.com/y_project/RuoYi-Vue.git项目背景 随着企业信息化需求的增加,传统开发模式存在效率低,重复劳动多等问题。若依项目通过整合主流技术框架&…...