python版pytorch模型转openvino及调用
一、openvino安装
参看官方文档https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html


安装命令是根据上面的选择生成。这里安装了pytorch和onnx依赖。
二、pytorch模型转opnvino模型推理
import os
import time
import cv2
import numpy as np
import torchfrom openvino.runtime import Core
from openvino.tools import moimg_path = r'./000000002306.jpg'
model_path = 'pure_pose.pt'
## 加载onnx模型
model = torch.load(model_path)
model.eval()
## onnx模型转openvino
model_ir = mo.convert_model(model, input_shape=[1,3, 256, 192],mean_values = [123.675, 116.28 , 103.53],scale_values=[58.395, 57.12 , 57.375],compress_to_fp16=True
)## 图片预处理
image = cv2.cvtColor(src=cv2.imread(filename=str(img_path)),code=cv2.COLOR_BGR2RGB,
)
resized_image,ratio, (dw, dh) = letterbox(image,new_shape=(256,192))# # # Convert the image shape to a shape and a data type expected by the network
# # # for OpenVINO IR model: (1, 3, 512, 512).
input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)ie = Core()
compiled_model_ir = ie.compile_model(model=model_ir, device_name="CPU")
# Get the names of input and output layers.
input_layer_ir = compiled_model_ir.input(0)
output_layer_ir = compiled_model_ir.output(0)# Do inference on the input image.
start_time = time.perf_counter()
result = compiled_model_ir([input_image])[output_layer_ir]
end_time = time.perf_counter()
print(f"Inference finished. Inference time: {end_time-start_time:.3f} seconds, "f"FPS: {1/(end_time-start_time):.2f}."
)
在pytorch转openvino模型的时候,已包含归一化操作过程。在推理的时候不需要对输入图片做归一化操作。
三、onnx模型转opnvino模型推理
1. onnx模型转openvino模型
在上面的安装文件夹openvino_env文件夹下找到mo_onnx.py文件。我的路径:openvino_env/lib/python3.9/site-packages/openvino/tools/mo/mo_onnx.py
根据下面的脚本将onnx模型转成openvino模型
python ../openvino_env/lib/python3.9/site-packages/openvino/tools/mo/mo_onnx.py \--input_model ./mobilenet_load.onnx \--output_dir ./openvino_model \--input_shape "[1,3,256,192]" \--mean_values="[123.675, 116.28 , 103.53]" \--scale_values="[58.395, 57.12 , 57.375]" \--data_type FP16
生成下面三个文件

2. 调用openvino模型进行推理
import time
import cv2
import numpy as np
from openvino.runtime import Core
img_path = r'./000000002306.jpg'
from utils import letterboximage = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)# Convert the resized images to network input shape
resized_image,ratio, (dw, dh) = letterbox(image,new_shape=(256,192))
h, w, c = resized_image.shape
input_image = np.expand_dims(np.transpose(resized_image, (2, 0, 1)), 0)# Load the network in Inference Engine
core = Core()
model_ir = core.read_model(model="openvino_model/mobilenet_load.xml")
compiled_model_ir = core.compile_model(model=model_ir, device_name="CPU")# Get output layer
output_layer_ir = compiled_model_ir.output(0)# Run inference on the input image
# Do inference on the input image.
start_time = time.perf_counter()
res_ir = compiled_model_ir([input_image])[output_layer_ir]
end_time = time.perf_counter()
print(f"Inference finished. Inference time: {end_time-start_time:.3f} seconds, "f"FPS: {1/(end_time-start_time):.2f}."
)
比较通过pytorch和onnx转成的openvino模型的推理时间,差不多。openvino模型推理时间大概是pytorch模型推理时间的1/5.
| 模型 | 推理时间(s) |
|---|---|
| openvino | 0.010 |
| onnx | 0.015 |
| pytorch | 0.048 |
相关文章:
python版pytorch模型转openvino及调用
一、openvino安装 参看官方文档https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html 安装命令是根据上面的选择生成。这里安装了pytorch和onnx依赖。 二、pytorch模型转opnvino模型推理 import os import time import cv2 import nu…...
TensorFlow 机器学习秘籍第二版:9~11
原文:TensorFlow Machine Learning Cookbook 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何…...
【苏州数字力量】面经 base上海
文章目录 【苏州数字力量】面经 base上海Java基础面1.说一下常见的数据类型、大小、以及他们的封装类2.重载和重写的区别3.谈谈Java的引用方式4.String有些什么方法5.String、StringBuffer、StringBuilder的区别是什么6.谈一下static有哪些用法7.谈一下常见的访问修饰符有哪些&…...
FVM链的Themis Pro(0x,f4) 5日IDO超百万美元,或让Filecoin逆风翻盘
交易一直是DeFi乃至web3领域最经久不衰的话题,也因此催生了众多优秀的去中心化协议,如Uniswap和Curve。这些协议逐渐成为了整个系统的基石。 在永续合约方面,DYDX的出现将WEB2时代的订单簿带回了web3。其链下交易的设计,仿佛回到了…...
webserve简介
目录 I/O分类I/O模型阻塞blocking非阻塞 non-blocking(NIO)IO复用信号驱动异步 webServerHTTP简介概述工作原理HTTP请求头格式HTTP请求方法HTTP状态码 服务器编程基本框架两种高效的事件处理模式Reactor模式Proactor模拟 Proactor 模式 线程池 I/O分类 …...
分析型数据库:MPP 数据库的概念、技术架构与未来发展方向
随着企业数据量的增多,为了配合企业的业务分析、商业智能等应用场景,从而驱动数据化的商业决策,分析型数据库诞生了。由于数据分析一般涉及的数据量大,计算复杂,分析型数据库一般都是采用大规模并行计算或者分布式计算…...
微服务高级篇学习【4】之多级缓存
文章目录 前言一 多级缓存二 JVM进程缓存2.1 案例导入2.1.1 使用docker安装mysql2.1.2 修改配置2.1.3 导入项目工程2.1.4 导入商品查询页面2.1.5 反向代理 2.2 初识Caffeine2.3 实现JVM进程缓存 三 Lua脚本入门3.1 安装Lua3.2 Lua语法学习 四 实现多级缓存4.1 OpenResty简介4.2…...
知乎版ChatGPT「知海图AI」加入国产大模型乱斗,称效果与GPT-4持平
“2023知乎发现大会”上,知乎创始人、董事长兼CEO周源和知乎合作人、CTO李大海共同宣布了知乎与面壁智能联合发布“知海图AI”中文大模型。 周源据介绍,知乎与面壁智能达成深度合作,共同开发中文大模型产品并推进应用落地。目前,知…...
邮件发送配置
QQ邮箱发送和接收配置: POP3/SMTP协议 接收邮件服务器:pop.exmail.qq.com ,使用SSL,端口号995 发送邮件服务器:smtp.exmail.qq.com ,使用SSL,端口号465 海外用户可使用以下服务器 接收邮件服务器…...
【Open CASCADE -生成MFC和QT事例方式】
源代码目录 adm目录:包含编译OCCT的相关工程; adm/cmake目录:包含使用CMake构建OCCT的相关处理脚本; adm/msvc目录:包含window平台 Visual C 2010, 2012, 2013, 2015, 2017 and 2019等版本的32/64平台solutinon文件; data目录: 包…...
python 笔记:PyTrack(将GPS数据和OpenStreetMap数据进行整合)【官网例子解读】
论文笔记:PyTrack: A Map-Matching-Based Python Toolbox for Vehicle Trajectory Reconstruction_UQI-LIUWJ的博客-CSDN博客4 0 包的安装 官网的两种方式我都试过,装是能装成功,但是python import PyTrack包的时候还是显示找不到Pytrack …...
苦中作乐 ---竞赛刷题31-40(15-20)
(一)目录 L1-032 Left-pad L1-033 出生年 L1-034 点赞 L1-035 情人节 L1-039 古风排版 (二)题目 L1-032 Left-pad 根据新浪微博上的消息,有一位开发者不满NPM(Node Package Manager)的做法…...
100种思维模型之人类误判心理思维模型-49
“我们老得太快,聪明得太迟”——查理芒格。 2005年,81岁的查理芒格认为81岁的他能够比10年前做得更好。他决定对1992年2月2日、1994年10月6日和1995年4月24日的三次演讲稿进行修改,于是就有了这个人类误判心理思维模型——25条人类误判心理学…...
【从零开始学Skynet】实战篇《球球大作战》(十三):场景代码设计(下)
1、主循环 《球球大作战》是一款服务端运算的游戏,一般会使用主循环程序结构,让服务端处理战斗逻辑。如下图所示,图中的 balls 和 foods代表服务端的状态,在循环中执行“ 食物生成”“位置更新”和“碰撞检 测” 等功能࿰…...
2023年虚拟数字人行业研究报告
第一章 行业概况 虚拟数字人指存在于非物理世界中,由计算机图形学、图形渲染、动作捕捉、深度学习、语音合成等计算机手段创造及使用,并具有多种人类特征(外貌特征、人类表演能力、人类交互能力等)的综合产物。虚拟人可分为服务型…...
Oracle 之表的连接类型——舞蹈跳出
嵌套循环(Nested Loops Join) Oracle 中最基本的连接方法,用于处理数据表之间的连接操作。 嵌套循环是通过对其中一个表(外部表)进行全循环操作,然后针对每条记录在另一张表(内部表)…...
深入浅出JS定时器:从setTimeout到setInterval
前言 当谈到 JavaScript 编程语言最基本的概念时,定时器就是一个必须掌握的知识点。在编写网站时,你经常会遇到需要在一定时间间隔内执行一些代码的情况。这时候,JavaScript 定时器就可以派上用场了。 什么是定时器? JS 定时器是…...
CountDownLatch、CyclicBarrier、Semaphore 的原理以及实例总结
文章目录 CountDownLatch、CyclicBarrier、Semaphore 的原理以及实例总结一、CountDownLatch二、CyclicBarrier三、Semaphore总结 CountDownLatch、CyclicBarrier、Semaphore 的原理以及实例总结 在Java多线程编程中,有三种常见的同步工具类:CountDownL…...
企业电子招投标系统源码之了解电子招标投标全流程
随着各级政府部门的大力推进,以及国内互联网的建设,电子招投标已经逐渐成为国内主流的招标投标方式,但是依然有很多人对电子招投标的流程不够了解,在具体操作上存在困难。虽然各个交易平台的招标投标在线操作会略有不同࿰…...
SpringCloud之Gateway组件简介
网关的理解 网关类似于海关或者大门,出入都需要经过这个网关。别人不经过这个网关,永远也看不到里面的东西。可以在网关进行条件过滤,比如大门只有对应的钥匙才能入内。网关和大门一样,永远暴露在最外面 不使用网关 前端需要记住每…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
