在Github中77k星的王炸AutoGPT,会独立思考,直接释放双手
文章目录
- 1 前言
- 1.1 什么是AutoGPT
- 1.2 为什么是AutoGPT
- 2 AutoGPT部分实例
- 2.1 类似一个Workflow
- 2.2 市场调研
- 2.3 自己写播客
- 2.4 接入客服
- 3 安装和使用AutoGPT
- 3.1 安装
- 3.2 基础用法
- 3.3 配置OpenAI的API
- 3.4 配置谷歌API
- 3.5 配置Pinecone API
- 4.讨论
1 前言
迄今为止,Github已经7.7万stars了,项目真的顶
GitHub 地址:https://github.com/torantulino/auto-gpt
这里提前下载好了,如果登不上Github或者下载失败的可以在后台回复
autogpt
领取v0.2.1的源码压缩包
1.1 什么是AutoGPT
十分重磅!GPT3.5都还没玩明白,傍着GPT4的AutoGPT就又要乱杀了,特斯拉前 AI 总监、刚刚回归 OpenAI 的 Andrej Karpathy也提到**“AutoGPT”将成为提示工程的下一个前沿**,网上很多人只提突破性,不提局限性,twitter的原话是prompt engineering领域
,因此其他领域还是坐观新测
Auto-GPT 是一个实验性的开源 Python 应用程序,它使用GPT-4自主运行。听名字也知道,auto,自主人工智能,这意味着 Auto-GPT 可以在几乎没有人为干预的情况下执行任务,并且可以自我提示。一言以蔽之,AutoGPT可以实现:分配一个任务,它能自行生成一个结果及任务的每一个提示,其实这类的AI还有AgentGPT、BabyAGI,但,真不够AutoGPT火,其也有火的道理
1.2 为什么是AutoGPT
Auto-GPT 可以将 AI 的行为分解为“思想”、“推理”和“批评”,这展示了 GPT 令人印象深刻的文本生成能力。此功能使用户能够准确了解 AI 在做什么以及为什么这样做。简单说是,**有一个人能帮你完成任务,还会告诉你怎么做。**例如,就 Chef-GPT 而言,AI 的第一个“想法”是“搜索即将发生的事件以找到合适的事件来创建独特的食谱”。这一行动背后的“原因”是“找到即将发生的事件将帮助我想出一个相关且令人兴奋的食谱。”
Auto-GPT 的“批评”分析了对其行为的潜在约束或限制,进一步展示了其在实现用户设定的目标的同时自主运行的能力。此外,Auto-GPT 具有长期和短期记忆功能,以及通过 ElevenLabs
进行的文本转语音功能。这些功能的融合使 Auto-GPT 更像人,增强了它与人互动的能力。
有人会问
ChatGPT
和Auto-GPT
区别,哪个更好?
都好,且不同一个纬度,无法平行比较。首先知道一下人工智能AI和通用人工智能AGI的区别:人工智能 (AI) 是一个广义术语,指的是能够执行需要人类智能才能完成的任务的计算机系统。然而,通用人工智能 (AGI) 指的是可以像人类一样使用自己的过程、推理和智力执行任务的人工智能。
尽管 ChatGPT 是一个非常有能力的聊天机器人,但它仍然只是一个聊天机器人。作为聊天机器人,它仅限于仅对通过提示立即询问的内容做出回应。因此,它可以完成惊人的事情,但只有通过人类的指导。 Auto-GPT 的能力远不止于此,可以要求它完成一项一无所知的任务,然后看着它完成所有工作。即:ChatGPT
需要人去引导他,得到自己想要的东西;AutoGPT
是给他指令,他自己去思考,自己去想办法完成结果交付。这可以很明显看出后者的特色Auto,更自主化。
2 AutoGPT部分实例
2.1 类似一个Workflow
生成一个 GPT-4 代理来完成添加到待办事项列表中的任何任务
视频链接:https://twitter.com/i/status/1645918390413066240
2.2 市场调研
运营一个 AI 代理,负责进行产品研究并撰写有关最佳耳机的摘要
第二个视频是关于博客研究的,此外Nathan Lands还展示了用于销售勘探的 BabyAGI
视频1链接:https://twitter.com/i/status/1646095934177124353
视频2链接:https://twitter.com/i/status/1645898646762782735
2.3 自己写播客
自行阅读近期发生的事件自行总结并且撰写播客内容
视频链接:https://twitter.com/i/status/1645898646762782735
2.4 接入客服
AutoGPT可以不需要使用者一直输入指令,直接化身24h全天候智能客服,通达全语种,理解客户查询,提供支持,甚至建议追加销售
推文链接:https://twitter.com/gregisenberg/status/1645817335024869376?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1645817335024869376%7Ctwgr%5E1bcdfa0f1f346feb279a7821bda593c41ddc14de%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fautogpt.net%2Famazing-use-cases-for-auto-gpt-on-twitter%2F
3 安装和使用AutoGPT
安装要求
3.1 安装
确保满足安装要求,记得下载git工具,然后在bash或者cmd或者turminal克隆库:
git clone https://github.com/Torantulino/Auto-GPT.git
进入库
cd Auto-GPT
安装依赖项
pip install -r requirements.txt
重命名.env.template
为 .env
并填写 OPENAI_API_KEY
. 如果打算使用语音模式,也需要填写 ELEVEN_LABS_API_KEY
- OpenAI API 密钥:https: //platform.openai.com/account/api-keys
- ElevenLabs API 密钥(在
个人资料
——xi-api-key
):https://elevenlabs.io
这样就可以了,如果需要在Azure
实例上使用 GPT,请设置USE_AZURE
为True
然后:
- 重命名
azure.yaml.template
为 并提供部分 中相关模型的azure.yaml
相关azure_api_base
和 所有部署 ID :azure_api_versionazure_model_map
-
fast_llm_model_deployment_id
:gpt-3.5-turbo 或 gpt-4 部署 ID
-
smart_llm_model_deployment_id
:gpt-4 部署 ID
-
embedding_model_deployment_id
:text-embedding-ada-002 v2 部署 ID
- 将所有这些值指定为双引号字符串
# Replace string in angled brackets (<>) to your own ID
azure_model_map:fast_llm_model_deployment_id: "<my-fast-llm-deployment-id>"...
- 详细信息可以参考:
https://pypi.org/project/openai/,https://learn.microsoft.com/en-us/azure/cognitive-services/openai/tutorials/embeddings?tabs=command-line
3.2 基础用法
- 在目录运行py文件
python scripts/main.py# 授权单个命令,输入y
# 授权一系列N个连续命令,输入y -N
# 退出程序,进入n
也可以在 AUTO-GPT 的每个动作之后,键入“NEXT COMMAND”以授权它们继续。
要退出程序,请键入“exit”并按 Enter。
- 可以在文件夹中找到活动和错误日志
./output/logs
,输出调试日志:
python scripts/main.py --debug
- 语音模式:
python scripts/main.py --speak#目前已有的11个lab id
Rachel : 21m00Tcm4TlvDq8ikWAM
Domi : AZnzlk1XvdvUeBnXmlld
Bella : EXAVITQu4vr4xnSDxMaL
Antoni : ErXwobaYiN019PkySvjV
Elli : MF3mGyEYCl7XYWbV9V6O
Josh : TxGEqnHWrfWFTfGW9XjX
Arnold : VR6AewLTigWG4xSOukaG
Adam : pNInz6obpgDQGcFmaJgB
Sam : yoZ06aMxZJJ28mfd3POQ
- docker:
# 调用和运行
docker build -t autogpt .
docker run -it --env-file=./.env -v $PWD/auto_gpt_workspace:/app/auto_gpt_workspace autogpt# 或者
docker-compose run --build --rm auto-gpt# 其他参数
docker run -it --env-file=./.env -v $PWD/auto_gpt_workspace:/app/auto_gpt_workspace autogpt --gpt3only --continuous
docker-compose run --build --rm auto-gpt --gpt3only --continuous
- 命令行常用命令:
# 查看所有可行参数
python -m autogpt --help# 用其他ai设置文件运行
python -m autogpt --ai-settings <filename># 指定内存后端
python -m autogpt --use-memory <memory-backend>
- 内存后端设置
启动redis的docker
docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest
然后配置.env
MEMORY_BACKEND=redis
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=<PASSWORD>
- 设置缓存类型
默认情况下,Auto-GPT 将使用 LocalCache 而不是 redis 或 Pinecone。
若要切换到任一值,请将 env 变量更改为所需的值:MEMORY_BACKEND
local(默认值)使用本地 JSON 缓存文件
pinecone使用在 ENV 设置中配置的 Pinecone.io 帐户
redis将使用配置的 Redis 缓存
milvus将使用配置的 milvus 缓存
weaviate将使用配置的编织缓存
- 连续模式
无需用户授权即可运行AI,100%自动化。 不建议使用连续模式。 这是潜在的危险,可能会导致你的 AI 永远运行或执行您通常不会授权的操作。 使用风险自负
python -m autogpt --speak --continuous
Ctrl + C
退出程序
- 设置GPT-3.5
如果用不了GPT4可以改成3.5
python -m autogpt --speak --gpt3only
3.3 配置OpenAI的API
大家最熟悉了,https://platform.openai.com/account/api-keys
3.4 配置谷歌API
在谷歌云控制台https://console.cloud.google.com/,在左栏中找到API,新建一个项目,命名随意,这里用了demo
然后create 一个 credentials,API
每日免费自定义搜索配额最多只允许 100 次搜索。要增加此限制,需要为项目分配一个计费帐户,以从每天多达 10,000 次搜索中获利
设置自定义搜索引擎:https://cse.google.com/cse/all,命名随性,搜索范围可以全网,或者自定义。建议按领域来,像做生物生命科学的定向pubmed和谷歌学术镜像,可以稍微省时
准备好了API,开始设置环境变量:
Windows 用户:
setx GOOGLE_API_KEY "YOUR_GOOGLE_API_KEY"
setx CUSTOM_SEARCH_ENGINE_ID "YOUR_CUSTOM_SEARCH_ENGINE_ID"
macOS 和 Linux 用户:
export GOOGLE_API_KEY="YOUR_GOOGLE_API_KEY"
export CUSTOM_SEARCH_ENGINE_ID="YOUR_CUSTOM_SEARCH_ENGINE_ID"
3.5 配置Pinecone API
- 去Pineconehttps://app.pinecone.io/并创建一个帐户。
- 选择计划以避免被收费。
Starter
- 在左侧边栏的默认项目下找到
API
密钥和区域
windows用户:
setx PINECONE_API_KEY "<YOUR_PINECONE_API_KEY>"
setx PINECONE_ENV "<YOUR_PINECONE_REGION>" # e.g: "us-east4-gcp"
setx MEMORY_BACKEND "pinecone"
macOS 和 Linux 用户:
export PINECONE_API_KEY="<YOUR_PINECONE_API_KEY>"
export PINECONE_ENV="<YOUR_PINECONE_REGION>" # e.g: "us-east4-gcp"
export MEMORY_BACKEND="pinecone"
4.讨论
这个虽然是刚出来的实验性项目,但是潜力,真的很大很大,关于Memory pre-seeding
,Image Generation
,Milvus
笔者这里没有提,内容太多太干太硬了,跟着上面的代码可以部署体验一波,需要重度使用务必仔细研究Github
相关文章:

在Github中77k星的王炸AutoGPT,会独立思考,直接释放双手
文章目录 1 前言1.1 什么是AutoGPT1.2 为什么是AutoGPT 2 AutoGPT部分实例2.1 类似一个Workflow2.2 市场调研2.3 自己写播客2.4 接入客服 3 安装和使用AutoGPT3.1 安装3.2 基础用法3.3 配置OpenAI的API3.4 配置谷歌API3.5 配置Pinecone API 4.讨论 1 前言 迄今为止,…...

FVM链的Themis Pro,5日ido超百万美元
交易一直是 DeFi 乃至web3领域最经久不衰的话题,也因此催生了众多优秀的去中心化协议,如 Uniswap 和 Curve。这些协议逐渐成为了整个系统的基石。 在永续合约方面,DYDX 的出现将 WEB2 时代的订单簿带回了web3。其链下交易的设计,仿…...
OpenCV实战——尺度不变特征检测器
OpenCV实战——尺度不变特征检测器 0. 前言1. SURF 特征检测器2. SIFT 特征检测算法3. 完整代码相关链接0. 前言 特征检测的不变性是一个重要概念,虽然方向不变性(即使图像旋转也能检测到相同特征点)能够被简单特征点检测器(例如 FAST 特征检测器等)处理,但难以实现在图像尺…...

如何快速建立一个podman环境
本文介绍如何安装podman,并创建podman容器 环境 Centos8 安装podman Podman 是一个容器环境,首先在主机上安装 Podman。执行下面命令来安装podman: [rootlocalhost ~]# yum -y install podman然后修改一下用户命名空间的大小:…...
计算机视觉:人工智能领域当下火热的计算机视觉技术综述
计算机视觉技术发展火热,是当前人工智能技术核心领域之一,计算机视觉是人工智能领域的一颗明珠,它是目前人工智能领域最早得到应用的技术之一,拥有广大的发展空间,目前很多技术产品已经得到应用,并改变着这个世界。 当下火热的技术 1. 目标检测:通过计算机视觉技术,检…...
EMC 专用名词大全~骚扰波形
2.1 瞬态(的) transient (adjective and noun) 在两相邻稳定状态之间变化的物理量或物理现象,其变化时间小于所关注的时间尺度。 2.2 脉冲 Pulse 在短时间内突变,随后又迅速返回其初…...

14:24面试,14:32就出来了 ,问的实在是太...
从外包出来,没想到算法死在另一家厂子,自从加入这家公司,每天都在加班,钱倒是给的不少,所以也就忍了。没想到8月一纸通知,所有人不许加班,薪资直降30%,顿时有吃不起饭的赶脚。 好在有…...
高频算法题
排序 冒泡排序快速排序选择排序归并排序堆排序 912. 排序数组 - 力扣(LeetCode) 数组中重复的数字 数组 删除有序数组中的重复项 26. 删除有序数组中的重复项 - 力扣(LeetCode) 最小的K个数 最小K个数 - 最小K个数 - 力扣&a…...
AI工程师眼中的未来 | 年轻人如何求职选方向
一个人的命运不仅要看个人的奋斗 也要看历史的选择 如果能顺应未来的趋势选择对了方向 就能让财富巨增瞬间起飞 但是如果选择错了方向 随着社会的发展 有很多工作的机会会渐渐的消失 而我们自己也会更容易被社会所淘汰 所以未来的趋势是什么 我们应该如何选择不同的方向 这对现…...

能自动翻译的软件-最精准的翻译软件
批量翻译软件是一种利用自然语言处理技术和机器学习算法,可以快速翻译大量文本内容的工具。批量翻译软件可以处理多种格式的文本,包括文档、网页、邮件、PDF等等,更符合掌握多语言的计算机化需求。 147CGPT翻译软件特点: 1.批量任…...
7.1 大学排行榜分析(project)
大学排名没有绝对的公正与权威,文件(alumni.txt, soft.txt)中为按照不同评价体系给出的国内大学前100名排行,对比两个排行榜单前m的学校的上榜情况,分析不同排行榜排名的差异。 输入输出 第一行输入1,第二行输入m&…...
TensorFlow 2.0 的新增功能:第三、四部分
原文:What’s New in TensorFlow 2.0 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现目…...

第1章 如何听起来像数据科学家
第1章 如何听起来像数据科学家 文章目录 第1章 如何听起来像数据科学家1.1.1 基本的专业术语1.1.3 案例:西格玛公司1.2.3 为什么是Python1.4.2 案例:市场营销费用1.4.3 案例:数据科学家的岗位描述 我们拥有如此多的数据,而且正在生…...
哈希表题目:在系统中查找重复文件
文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 解法思路和算法代码复杂度分析 进阶问题答案后记 题目 标题和出处 标题:在系统中查找重复文件 出处:609. 在系统中查找重复文件 难度 6 级 题目描述 要求 给定一个目录信息列表 paths…...

机器人感知与控制关键技术及其智能制造应用
源自:自动化学报 作者:王耀南 江一鸣 姜娇 张辉 谭浩然 彭伟星 吴昊天 曾凯 摘 要 智能机器人在服务国家重大需求, 引领国民经济发展和保障国防安全中起到重要作用, 被誉为“制造业皇冠顶端的明珠”. 随着新一轮工业革命的到来, 世界主要工业国…...

精通线程池,看这一篇就够了
一:什么是线程池 当我们运用多线程技术处理任务时,需要不断通过new的方式创建线程,这样频繁创建和销毁线程,会造成cpu消耗过多。那么有没有什么办法避免频繁创建线程呢? 当然有,和我们以前学习过多连接池技术类似&…...
解决图片、视频地址加密问题
const getImgUrl async () > {const imgUrl 远程链接地址const response await fetch(imgUrl)//取出blob二进制const blob await response.blob()//url转为类似blob:http://localhost:9587/cf3265b9-75eb-4722-8e11-5048dec2564d//赋值给需要展示的地方const url URL.c…...
GPT引领学习之旅:一篇让程序员轻松掌握Elasticsearch的攻略
一、引言 随着大数据技术的飞速发展,程序员们面临着越来越多的挑战。Elasticsearch作为一款流行的开源搜索和分析引擎,已成为许多项目的重要组成部分。那么如何高效地学习并掌握Elasticsearch呢?在这篇文章中,我们将探讨如何运用…...
23种设计模式-仲裁者模式(Android应用场景介绍)
仲裁者模式是一种行为设计模式,它允许将对象间的通信集中到一个中介对象中,以减少对象之间的耦合度。本文将通过Java语言实现仲裁者模式,并介绍如何在安卓开发中使用该模式。 实现仲裁者模式 我们将使用一个简单的例子来说明仲裁者模式的实…...

【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计
【数据统计】— 极大似然估计 MLE、最大后验估计 MAP、贝叶斯估计 极大似然估计、最大后验概率估计(MAP),贝叶斯估计极大似然估计(Maximum Likelihood Estimate,MLE)MLE目标例子: 扔硬币极大似然估计—高斯分布的参数 矩估计 vs LSE vs MLE贝叶斯公式&am…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...