当前位置: 首页 > news >正文

PageRank算法介绍

互联网上有数百亿个网页,可以分为这么几类:不含有用信息的,比如垃圾邮件;少数人比较感兴趣的,但范围不是很广的,比如个人博客、婚礼公告或家庭像册;很多人感兴趣的并且十分有用的,比如社交网站、新闻网站或某个公司的网站。

如此大量的网页对搜索引擎来说是个问题,因为搜索结果可能会有百万个甚至千万个。比如,你想访问“知乎”,但是不知道它具体的URL,这时你会在搜索框里输入“知乎”两个字,假设搜索结果有几百万条,那么最热门的那一条或者说“最正确”的那一条该如何来确定呢?

一个比较有效的方法是数inlinks,以知乎为例,数有多少个链接指向它。PageRank就是基于这种链接分析(link analysis)的算法。

PageRank计算过程示例

假设有三个网页,他们的结构如下:

对于网页C来说,它的PageRank表示为PR(C),则有PR(c) = \frac{PR(A)}{2} + PR(B)。因为对于C来说,它的inlinks来自于A和B。而A有两个指向外部的链接,指向C的占其中的二分之一。同理,对于

A来说,有 

PR(A)=PR(C);PR(B)=PR(A)2

假设,每个网页的初始值为$\frac{1}{3}$,则经过几次迭代后,PageRank会收敛到某个值。过程如下:

初始值: 

PR(A)=13,PR(B)=13,PR(C)=13

第一次迭代: 

PR(A)=PR(C)=0.33,PR(B)=PR(A)2=0.17,PR(C)=PR(A)2+PR(B)=0.332+0.33=0.5

。注意:利用上一次迭代的值进行计算

第二次迭代: 

PR(A)=0.5,PR(B)=0.17,PR(C)=0.332+0.17=0.33

第三次迭代:

PR(A)=0.33,PR(B)=0.25,PR(C)=0.42

第四次迭代:

PR(A)=0.42,PR(B)=0.21,PR(C)=0.42

第n次迭代...

经过更多次的迭代后,PR值收敛在

PR(A)=0.4,PR(B)=0.2,PR(C)=0.4

PageRank的矩阵表示及计算过程

以下是python示例

import numpy as np# 确定网页图的结构
m = int(input('网页的总个数'))
map_page = [[-1 for i in range(m)] for j in range(m)]
map_page[0][1] = 1
map_page[0][2] = 1
map_page[1][3] = 1
map_page[2][0] = 1
map_page[2][1] = 1
map_page[2][3] = 1
map_page[3][2] = 1Pr = np.ones((m,))/m
print('原始页面重要性初始化:\n')
print(Pr)n = int(input('经过多少次迭代:'))
for k in range(n):new_Pr = [0 for i in range(m)]d = [0 for i in range(m)]for i in range(m):for j in range(len(map_page[i])):# 统计第i个节点的出度if map_page[i][j] == 1:d[i] += 1for i in range(m):for j in range(len(map_page[i])):if map_page[j][i] == 1:new_Pr[i] += Pr[j]/d[j]print(f'经过{k+1}次迭代以后的结果为:\n')Pr = new_Pr.copy()print(Pr)print(f'经过{n}次迭代以后的结果为:\n')
print(Pr)

相关文章:

PageRank算法介绍

互联网上有数百亿个网页,可以分为这么几类:不含有用信息的,比如垃圾邮件;少数人比较感兴趣的,但范围不是很广的,比如个人博客、婚礼公告或家庭像册;很多人感兴趣的并且十分有用的,比…...

springboot+vue职称评审管理系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的职称评审管理系统。项目源码请联系风歌,文末附上联系信息 。 目前有各类成品java毕设,需要请看文末联系方式 …...

腾讯云4核8G轻量服务器12M支持多少访客同时在线?并发数怎么算?

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线?通用型-4核8G-180G-2000G,2000GB月流量,系统盘为180GB SSD盘,12M公网带宽,下载速度峰值为1536KB/s,即1.5M/秒,假设网站内页平均大小为60KB…...

图片英文翻译成中文转换器-中文翻译英文软件

您正在准备一份重要的英文资料或文件,但是您还不是很熟练地掌握英文,需要翻译才能完成您的任务吗?哪个软件能够免费把英文文档翻译成中文?让我们带您了解如何使用我们的翻译软件来免费翻译英文文档为中文。 我们的翻译软件是一款功…...

月薪10k和40k的程序员差距有多大?

程序员的薪资一直是大家关注的焦点,相较于其他行业,程序员的高薪也是有目共睹的,而不同等级的程序员处理问题的方式与他们的薪资直接挂钩。 接下来就一起看一下月薪10k、20k、30k、40k的程序员面对问题都是怎么处理的吧! 场景一 …...

gateway整合knife4j(微服务在线文档)

文章目录 knife4j 微服务整合一、微服务与单体项目文档整合的区别二、开始整合1. 搭建一个父子maven模块的微服务,并引入gateway2.开始整合文档 总结 knife4j 微服务整合 由于单个服务的knife4j 整合之前已经写过了,那么由于效果比较好,然后微服务的项目中也想引入,所以开始微…...

ASP.NET 记录 HttpRequest HttpResponse HttpServerUtility

纯属个人记录,会有错误 HttpRequest Browser是获取客户端浏览器的信息 Cookies是获取客户端的Cookies QueryString是获取客户端提交的数据 ServerVariables是获取服务器端或客户端的环境变量信息 Browser 语法格式: Request.Browser[“浏览器特性名”] 常见的特性名 名称说…...

Python 人工智能:11~15

原文:Artificial Intelligence with Python 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何…...

辉煌优配|军工板块逆市上涨,16只概念股已披露一季度业绩预喜

今日,军工股逆市上涨。 4月21日,A股三大股指低开低走,半导体、AI使用、信创工业、软件等科技属性概念领跌,国防军工、食品饮料和电力设备等板块上涨。 工业互联网中心工业规模超1.2万亿元 据央视新闻报道,本年是《工业…...

看板与 Scrum:有什么区别?

看板和Scrum是项目管理方法论,以小增量完成项目任务并强调持续改进。但是他们用来实现这些目标的过程是不同的。看板以可视化任务和连续流程为中心,而Scrum更多是关于为每个交付周期实施时间表和分配设定角色。 在看板和Scrum之间做出选择并不总是必要…...

零代码是什么?零代码平台适合谁用?

随着信息技术的发展,软件开发领域也不断发生变革,零代码(No-Code)开发模式越来越受到关注。 零代码到底是什么,能不能用通俗的话来说?这就来给大家讲一讲! 01 零代码为什么出现? 随…...

CNStack 云服务云组件:打造丰富的云原生技术中台生态

作者:刘裕惺 CNStack 相关阅读: CNStack 多集群服务:基于OCM 打造完善的集群管理能力 CNStack 虚拟化服务:实现虚拟机和容器资源的共池管理 CNStack 云边协同平台:实现原生边缘竟能如此简单 01 前言 CNStack 2.0…...

#PythonPytorch 1.如何入门深度学习模型

我之前也写过一篇关于Keras的深度学习入门blog,#Python&Keras 1.如何从无到有在自己的数据集上实现深度学习模型(入门),里面也有介绍了一下一点点机器学习的概念和理解深度学习的输入,如果对这方面有疑惑的朋友可以…...

[API]节点流和处理流字节流和字符流(七)

java将流分为节点流和处理流两类: 节点流:也称为低级流,是真实连接程序和另一端的"管道",负责实际读写数据的流,读写一定是建立在节点流的基础之上进行的。节点流好比家里的"自来水管"&#xff0c…...

开心档之C++ 模板

C 模板 目录 C 模板 函数模板 实例 类模板 实例 模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。 模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用…...

拥抱还是革命,ChatGPT时代 AI专家给出15条科研生存之道

来源:专知 微信号:Quan_Zhuanzhi 你是学术机构的人工智能研究员吗?你是否担心自己无法应对当前人工智能的发展步伐?您是否觉得您没有(或非常有限)访问人工智能研究突破所需的计算和人力资源?你并不孤单; 我们有同样的感觉。越来越多的人工智能学者不…...

python算法中的数学算法(详解下)

目录 一. 学习目标: 二. 学习内容: Ⅰ. 数值优化 ①、均值 ②、方差 ③、协方差...

Docker Desktop使用PostgreSql配合PGAdmin的使用

在看此教程之前,请先下载安装Docker Desktop 安装成功可以查看版本 然后拉取postgresql的镜像:docker pull postgres:14.2 版本可以网上找一个版本,我的不是最新的 发现会报一个问题 no matching manifest for windows/amd64 10.0.19045 i…...

大佬入局AI,职场人有新机会了?

卸任搜狗CEO一年半后,王小川宣布在AI大模型领域创业,与前搜狗COO茹立云联合成立人工智能公司百川智能,打造中国版的OpenAI,并对媒体表示:“追上ChatGPT水平,我觉得今年内可能就能够实现,但对于G…...

《攻防演练》在没有基础安全能力的情况下如何做好蓝队防守

目的: 1、净化企业或机构的网络环境、强化网络安全意识; 2、防攻击、防破坏、防泄密、防重大网络安全故障; 3、检验企业关键基础设施的安全防护能力; 4、提升关键基础设施的网络安全防范能力和水平。 现状: 那么问…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

AspectJ 在 Android 中的完整使用指南

一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...