Vicuna- 一个类 ChatGPT开源 模型
Meta 开源 LLaMA(大羊驼)系列模型为起点,研究人员逐渐研发出基于LLaMA的Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型并开源。
google提出了一个新的模型:Vicuna(小羊驼)。该模型基于LLaMA,参数量13B。Vicuna-13B 通过微调 LLaMA 实现了高性能的对话生成
Vicuna
Vicuna 是一种大型语言模型,基于Transformer架构,它可以进行自然语言理解和生成。Vicuna 是由Google Brain的研究人员开发的,并在2021年被发布。
Vicuna 在自然语言处理任务上表现出了非常出色的性能,尤其是在问答和智能写作任务上。它可以快速回答各种问题,并且回答的质量高。Vicuna 的训练数据包括了庞大的文本数据,包括纸质书籍、文章、新闻报道、论坛评论、博客文章等。
Vicuna 的训练方法是通过对文本数据进行训练来完成的。它可以通过对文本输入进行各种自然语言任务的推理和决策,例如回答问题、生成文本、自然语言生成等。Vicuna 还可以通过自我学习和预测来逐渐提高自己的表现。
总的来说,Vicuna 是一种非常强大的大型语言模型,它可以在各种自然语言处理任务上提供高质量的解答。它已经成为了自然语言处理领域的一个重要的研究方向,并且未来可能会发挥越来越重要的作用。
vicuna和 LLaMA 的关系
LLaMA 是指 Local Language Model with Multilingual Agnosticism,即本地语言模型多语言简约抽象。它是一种基于 Transformer 架构的语言模型,可以处理多种语言的自然语言任务,如文本生成、问答等。
相关文章:
Vicuna- 一个类 ChatGPT开源 模型
Meta 开源 LLaMA(大羊驼)系列模型为起点,研究人员逐渐研发出基于LLaMA的Alpaca(羊驼)、Alpaca-Lora、Luotuo(骆驼)等轻量级类 ChatGPT 模型并开源。 google提出了一个新的模型:Vicuna(小羊驼)。该模型基于LLaMA,参数量13B。Vicuna-13B 通过微调 LLaMA 实现了高性能…...
5.1 数值微分
学习目标: 作为数值分析的基础内容,我建议你可以采取以下步骤来学习数值微分: 掌握微积分基础:数值微分是微积分中的一个分支,需要先掌握微积分基础知识,包括导数、极限、微分等。 学习数值微分的概念和方…...
云计算服务安全评估办法
云计算服务安全评估办法 2019-07-22 14:46 来源: 网信办网站【字体:大 中 小】打印 国家互联网信息办公室 国家发展和改革委员会 工业和信息化部 财政部关于发布《云计算服务安全评估办法》的公告 2019年 第2号 为提高党政机关、关键信息基础设施运营者…...
laravel5.6.* + vue2 创建后台
本地已经安装好了composer 1.新建 Laravel5.6.*项目 composer create-project --prefer-dist laravel/laravel laravel5vue2demo 5.6.* 2. cd laravel5vue2demo 3. npm install /routes/web.php 路由文件中, 修改 Route::get(/, function () {return view(index); });新建…...
Python自动化sql注入:布尔盲注
在sql注入时,使用python脚本可以大大提高注入效率,这里演示一下编写python脚本实现布尔盲注的基本流程: 演示靶场:sqli-labs 布尔盲注 特点:没有回显没有报错,但根据sql语句正常与否返回不同结果&#x…...
Microsoft Defender for Office 365部署方案
目录 前言 一、Microsoft Defender for Office 365 部署架构 1、部署环境 2、Microsoft Defender for Office 365 核心服务...
字节岗位薪酬体系曝光,看完感叹:不服真不行
曾经的互联网是PC的时代,随着智能手机的普及,移动互联网开始飞速崛起。而字节跳动抓住了这波机遇,2015年,字节跳动全面加码短视频,从那以后,抖音成为了字节跳动用户、收入和估值的最大增长引擎。 自从字节…...
华为OD机试-高性能AI处理器-2022Q4 A卷-Py/Java/JS
某公司研发了一款高性能AI处理器。每台物理设备具备8颗AI处理器,编号分别为0、1、2、3、4、5、6、7。 编号0-3的处理器处于同一个链路中,编号4-7的处理器处于另外一个链路中,不同链路中的处理器不能通信。 现给定服务器可用的处理器编号数组…...
Vue - 实现垂直菜单分类栏目,鼠标移入后右侧出现悬浮二级菜单容器效果(完整示例源码,详细代码注释,一键复制开箱即用)
前言 网上的教程都太乱了,各种杂乱无注释代码、图片资源丢失、一堆样式代码,根本无法改造后应用到自己的项目中。 本文实现了 在 Vue / Nuxt 项目中,垂直分类菜单项,当用户鼠标移入菜单后,右侧自动出现二级分类悬浮容器盒子效果, 您可以直接复制源码,然后按照您的需求再…...
NVM-无缝切换Node版本
NVM-无缝切换Node版本 如果未使用nvm之前已经下载了node,并且配置了环境变量,那么此时删除这些配置(Node的环境以及Node软件),使用nvm是为了在某些项目中使用低版本的node NVM下载 进入github的nvm readme: https://github.com/coreybutler/nvm-windows…...
CCF-CSP真题《202303-1 田地丈量》思路+python,c++满分题解
想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全 试题编号:202303-1试题名称:田地丈量时间限制:1.0s内存限制:512.0MB问题描述: 问题描述 西西艾弗岛上散落着 n 块田地。每块田地可视为…...
Autosar-软件架构
文章目录 一、Autosar软件架构分层图二、应用层三、RTE层四、BSW层1、微控制器抽象层2、ECU抽象层I/O硬件抽象COM硬件抽象Memory硬件抽象Onboard Device Abstraction3、复杂驱动层4、服务层系统服务通信服务CAN一、Autosar软件架构分层图 架构分层是实现软硬件分离的关键,它也…...
8年测开年薪30W,为什么从开发转型为测试?谈谈这些年的心路历程……
谈谈我的以前,从毕业以来从事过两个多月的Oracle开发后转型为软件测试,到现在已近过去8年成长为一个测试开发工程师,总结一下之间的心路历程,希望能给徘徊在开发和测试之前的同学一点小小参考。 一、测试之路伏笔 上学偷懒&#…...
滑动奇异频谱分析:数据驱动的非平稳信号分解工具(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
updateByPrimaryKey和updateByPrimaryKeySelective的区别
版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl MyBatis Generator概述 MyBatis Generator是一个专门为MyBatis框架使用者定制的代码生成器,它可以快速的根据表生成对应的映射文件、接口文件、POJO。而且&#…...
【ARM Coresight 4 - Rom Table 介紹】
文章目录 1.1 ROM Table1.1.1 Entry 寄存器 1.2 ROM Table 例子 1.1 ROM Table 在一个SoC中,有多个Coresight 组件,但是软件怎么去识别这些 Coresight 组件,去获取这些Coresight 组件的信息了?这个时候,就需要靠 Core…...
11111111
单选题 1、某地上2层的仪表装配厂房,耐火等级二级,每层建筑面积10000m2,该厂 房二层设有800m2的金属零件抛光工段,采用耐火极限为2.00h的防火隔墙与其他区域分隔,该厂房的火灾危险性为( )。 正确答案:B A.甲类 B.乙类 C.丙…...
JavaWeb——TCP协议的相关特性
目录 一、TCP 1、特性 2、确认应答 (1)、定义 (2)、原理 (3)、接收缓冲区 3、超时重传 (1)、丢包 (2)、定义 (3)、分类 二、…...
数据结构(C语言实现)——二叉树的概念及二叉树顺序结构和链式结构的实现(堆排序+TOP-K问题+链式二叉树相关操作)
文章目录 1. 前言2. 树的概念及结构2.1 树的概念2.2 树的相关概念2.3 树的表示 3. 二叉树的概念3.1 特殊二叉树3.2 二叉树的性质 4. 二叉树的顺序存储4.1 堆的概念4.2 堆的实现4.2.1 堆的结点定义4.2.2 堆的打印和销毁4.2.3 堆的插入4.2.4 堆的删除4.2.5 取堆顶数据4.2.6 堆的判…...
OpenShift:关于OpenShift(OKD)通过命令行的方式部署镜像以及S2I流程Demo
写在前面 因为参加考试,会陆续分享一些 OpenShift 的笔记博文内容为安装完 OpenShift, 利用 OpenShift 引擎部署一个镜像应用和一个 S2I 流程部署应用 Demo学习环境为 openshift v3 的版本,有些旧这里如果专门学习 openshift ,建议学习 v4 版…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
