从三室心脏MRI影像检测主动脉瓣病变
Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View
摘要
背景
- 心脏磁共振(CMR)是量化心脏容量、功能和血流量的金标准。
- 定制的MR脉冲序列定义了对比机制,采集几何形状和定时,可以在CMR期间应用,以实现独特的组织表征。
- 每个病人都有所有可能的获取选择是不切实际的。
在三腔(3-CH) CMR影像中定位主动脉瓣。主动脉瓣有两种主要的异常类型。狭窄:瓣膜变窄导致血液不能充分流出;不全(反流):无法阻止血液回流到左心室。
本文方法
开发并评估了一个深度学习系统,以准确分类主动脉瓣异常,为需要的患者提供进一步的定向成像。
受低级图像处理任务的启发,我们提出了一个多级网络
- 生成热图来定位主动脉瓣小叶的铰链点和主动脉狭窄或反流射流
- 在从三家NHS医院获得的临床CMR研究数据集(n = 1017例患者)上训练和评估了我们的所有模型。我们的结果(平均准确率= 0.93,f1得分= 0.91)表明,专家指导的基于深度学习的特征提取和分类模型为进一步定向成像提供了可行的策略,从而提高了CMR扫描的效率和效用。
方法
本文方法由六个主要步骤组成,如图2所示:
- 3CH CMR图像中链点的自动定位
- 主动脉瓣小叶和狭窄或反流射流引起的病理曲线的热图估计
- 估计热图中的曲线跟踪
- 每帧检测曲线的量化
- 跨帧特征总结
- 患者分类
前两步被定义为回归任务,我们训练相同网络的副本来估计这些任务中的热图。
The Proposed Network for Heat Map Regression
该网络包含三个相同的子网,对前一个子网的输出进行了细化。每个子网络都类似于U-Net,具有编码器、解码器和跳过连接。为了提高子网络对铰链点和瓣膜小叶/病理射流的敏感性,用在低级图像处理任务中表现得更好的密集块替换了前两个和最后两个卷积块
每个密集块包含5个3 × 3卷积层,然后是1 × 1卷积层。
对于铰链点定位,网络生成三个热图:每个铰链点一个热图,两个铰链点一个热图,以约束它们在单个帧中的位置。
对于曲线热图估计,网络产生4张热图;两个是主动脉瓣小叶两个是病理喷流。用损失函数L = L(≈H1, H1) + L(≈H2, H2) + L(≈H3, H3)来优化这两个网络的参数,其中L是均方误差损失。H和~ H分别表示地热图标签及其估计
从热图定位铰链点
我们通过取3CH CMR视图每帧每个铰链点对应的热图的最大值来检测估计热图中铰链点的位置。
由于我们的训练数据集中帧的有限表示,某些帧的预测可能不准确。因此,我们使用帧间铰链点的中间值在中间铰链点位置裁剪CMR图像。裁剪后的框架用于主动脉小叶和曲线状结构的热图回归,这是病理指示
Pathology Classification
使用了一种简单的跟踪方法:从最大值的位置开始跟踪热图中的脊点,直到达到停止阈值。
我们这样做是为了检测预测曲线热图中的任何潜在曲线。当热图的最大值超过初始阈值时,跟踪开始。
然后,从预测曲线中提取特征。尽管任何病理曲线的存在都足以将3CH CMR视图分类为异常,但假曲线的存在-通常是在采集过程中由人工产生的-使得这种分类不太准确。
主动脉瓣从一个框架移动到另一个框架可以获得重要的信息并揭示细微的异常
例如,临床医生会怀疑狭窄的主动脉瓣(在心脏周期内不能完全打开)
因此,我们量化每条曲线——主动脉瓣小叶和病理流——基于:
(i)它们与铰链点的接近程度:从曲线的中点到图像中心的距离,即在预测瓣膜铰链的中点;
(ii)它们相对于连接铰链点的直线的方向
(iii)其长度
(iv)是曲线的概率,能够区分真曲线和假曲线
我们通过将生成的热图视为曲线的概率图,并取跟踪曲线位置的采样概率的平均值来实现这一点(特征(iv))。考虑到每帧有四种曲线类型(两叶和两个流),我们总共分析了16个特征。这些特征(见图3)与临床医生对主动脉瓣异常的3CH CMR的解释相似。
式中,Ff表示框架f的特征,包括c1···c4四条曲线的特征,包括右冠状动脉尖叶、狭窄性血流病理曲线、非冠状动脉尖叶和反流血流病理曲线
L、A、D、P分别表示曲线长度、铰点与曲线的夹角、曲线中间到图像patch中心的距离以及沿曲线取曲线概率的平均值。
对于具有k帧CMR图像的患者,存在一个大小为R(k×16)的特征集,其中k取决于患者数据。在不正常的情况下,一张电影中的多个画面会显示主动脉异常。
随着严重程度的增加,更多的帧将包含病理曲线。因此,我们用¯F = K (F1, F2,···Fk)来总结k帧以减少缺失异常病例的可能性,其中¯F表示患者的总结特征集,通过使用总结技术k,如下所述,在k帧上
本文提出了四种特征总结方法
(i)计算跨帧特征的中位数(median)
(ii)计算跨帧特征的平均值(mean)
(iii)使用具有所有曲线概率最大值的单帧特征(SingleFrameMaxCurveP),无论曲线类型如何
(iv)使用显示每种类型的最大曲线概率的曲线特征(MaxCurveP)。除了第三种方法外,所有技术都使用多个框架来检测主动脉瓣异常患者。前两种技术假设特征是独立的,而后两种技术则保留特征与曲线的隶属关系
Imaging Data and Manual Annotation
使用两个独立的数据集进行热图回归和病理分类。对于前一项任务,我们使用了来自80名患者的1221个独特框架,其中铰链点,主动脉瓣小叶和病理流由三位心脏病专家手动注释。利用σ = 5像素的类高斯核对二值标注进行平滑处理,生成热图。
900帧用于训练,100帧用于验证,221帧用于绩效评估。我们还使用了1000个健康帧来增加曲线估计的训练集的大小。数据分割基于患者选择。在分类任务中,我们获得了1017名患者的队列,他们有二元标签来描述他们是否有正常或异常的主动脉瓣。496/1017例患者主动脉瓣异常。其中主动脉瓣狭窄184例,主动脉瓣反流222例,混合性瓣膜病变90例。
患者的平均帧数为31±15。图像分辨率在1.17 × 1.17 ~ 1.56 × 1.56像素之间
结果
相关文章:

从三室心脏MRI影像检测主动脉瓣病变
Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View 摘要 背景 心脏磁共振(CMR)是量化心脏容量、功能和血流量的金标准。定制的MR脉冲序列定义了对比机制,采集几何形状和定时,可以在CMR期间应用,以实现独特的组织…...

【JavaWeb】JavaScript
1、JavaScript 介绍 Javascript 语言诞生主要是完成页面的数据验证。因此它运行在客户端,需要运行浏览器来解析执行 JavaScript 代码。 JS 是 Netscape 网景公司的产品,最早取名为 LiveScript;为了吸引更多 java 程序员。更名为 JavaScript。 JS 是弱…...
Apache Doris 1.2.4 Release 版本正式发布|版本通告
亲爱的社区小伙伴们,我们很高兴地宣布,Apache Doris 于 2023 年 4 月 27 日迎来 1.2.4 Release 版本的正式发布!在 1.2.4 版本中,Doris 团队已经修复了自 1.2.3 版本发布以来近 150 个问题或性能改进项。同时,1.2.4 版…...

【C++STL】map
文章目录 一. map的介绍二. map的使用结束语 一. map的介绍 map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素在map中,键值key通常用于排序和唯一地标识元素,而value中存储与此键值…...
vue2项目PC端如何适配不同分辨率屏幕
项目构建:基于vue-cli3构建,使用postcss-px2rem px2rem-loader进行rem适配 实现原理:每次打包,webpack通过使用插件postcss-px2rem,帮我们自动将px单位转换成rem单位前方有坑:UI框架部分组件使用JavaScript…...

CorelDRAW2023最新版本图像设计软件
CorelDRAW 2023作为最新版的图像设计软件,在功能上做了较大提升,主要新的功能特性如下: 1. 全新界面设计:采用简约现代的 UI 设计,菜单和工具重新组织,更加直观易用。提供自动提示与设计指导,易于上手。 2. 智能工具与提示:运用 AI技术对用户操作行为和设计习惯进行分析,给出…...

第64章 树型结构数据的前端渲染渲染显示示例
1 \src\views\TreeTestView.vue <template> <div class"wrap"> <!--注意:1、“回到顶部”组件及其回滚内容都必须包含到同1个div容器中。--> <!-- 2、div容器中必须有1个唯1性的样式类(例如:wrap)…...

超级国际象棋:第二个里程碑已完成
获取Cartesi资助的项目的最新进展,现在将完全去中心化的Web3国际象棋带到你的手中 “Ultrachess是一个完全基于区块链的国际象棋应用程序,由Cartesi Rollup技术支持,允许用户将真实价值投入到比赛中,不仅仅是他们的Elo分数。 此…...
vue3 HTML 和静态资源
目录 静态资源可以通过两种方式进行处理: URL 转换规则 public 文件夹 何时使用 public 文件夹 public/index.html 文件是一个会被 html-webpack-plugin 处理的模板。在构建过程中,资源链接会被自动注入。另外,Vue CLI 也会自动注入 re…...

5G基站外市电改造建设方案 (ppt可编辑)
本资料来源公开网络,仅供个人学习,请勿商用,如有侵权请联系删除 外市电定义及分类 定义:由供电部门提供的专用高压电源或非专用高压电源或低压电源均称为市电。分类: (1)按电压等级分类 ①提供…...

C++ 类和对象(上)
类 面向对象的三大特性:封装,继承,多态 C语言结构体中只能定义变量,在C中,结构体内不仅可以定义变量,也可以定义函数。比如: 之前在数据结构初阶中,用C语言方式实现的栈,…...

【BIM+GIS】BIM模型导入GIS软件之前的一些处理设置
文章目录 一、模型位置发生偏移二、模型对象丢失或增加三、模型材质发生变化四、导出过程缓慢五、模型属性批量丢失一、模型位置发生偏移 在视图→可见性/图形替换模型类别→场地(VV可见性快捷),勾选项目基点。 单击选中项目基点,在属性中修改几点坐标。 即使修改了项目基…...
js FileReader的常用使用方法
FileReader 对象允许 Web 应用程序异步读取存储在用户计算机上的文件(或原始数据缓冲区)的内容,使用 File 或 Blob 对象指定要读取的文件或数据。 主要的读取方法: readAsArrayBuffer(): 开始读取指定的 Blob 中的内…...

网络威胁情报:数据的力量
在一个日益互联和数字化的世界中,网络威胁已成为一项重大挑战,可能危及您组织的声誉、财务稳定性和整体运营效率。 事实上,根据 IBM 2022 年的一份报告,数据泄露的平均成本现在为 435 万美元。 鉴于网络威胁的重要性和影响日益突…...
shell:清理指定目录中指定天数之前的旧文件
前言 我们在服务器运行一些服务经常会产生很多临时文件,而有些临时文件不定期处理很容易就打满了整个磁盘;所以有必要去定期清理,基于这个需求我们就可以搞一个脚本结合crontab或者服务调度这些来使用; 脚本实现 #!/bin/bash# …...

想入门网络安全?先来看看网络安全行业人才需求!
如果你是一个想要入门网络安全行业的小白、如果你是网络安全专业在读的大学生、如果你是正在找工作的新手,那么这篇文章你一定要仔细看。毕竟知己知彼百战百胜,知道行业的人才需求才能更好得发挥自己的优势。 当你打开BOSS直聘、拉钩等招聘网站…...
0424 spring AOP学习
AOP是指什么? 面向切面编程,Aspect Oriented Program。是一种编程范式、思想。 Spring AOP里涉及的AOP原理叫什么? 动态代理。 动态代理其实就是在运行时动态的生成目标对象的代理对象,在代理对象中对目标对象的方法进行增强。…...

GB/T 28181-2022 新版差异笔记
GB/T 28181-2022 新版差异笔记 文章目录 GB/T 28181-2022 新版差异笔记更改了标准范围删除部分术语和定义增加PTZ缩略语更改SIP监控域互联结构图更改了“联网系统通讯协议结构图”增加了媒体流数据传输的RTP时间戳要求增加了对H.265、AAC的支持更改了SDP协议的引用更改了与其他…...

以轻量级服务器niginx为核心的JavaWeb项目:第一章 项目设计
这里写目录标题 一 需求分析与环境搭建1.需求分析2.环境搭建1.2.1首先配置mysql环境1.2.2 配置maven环境 二 打成War包,发到linux上 一 需求分析与环境搭建 1.需求分析 2.环境搭建 1.2.1首先配置mysql环境 先查找一下mysql环境 [roothadoop122 ~]# mysql --vers…...
【error】 Request method ‘GET‘ not supported app端调用后台接口报错,后台人员自己调用时没问题
目录 问题描述原因分析解决方案方法一:方法二:方法三: 联系自身 问题描述 org.springframework.web.HttpRequestMethodNotSupportedException: Request method ‘GET’ not supported at org.springframework.web.servlet.mvc.method.Request…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...