面试|兴盛优选数据分析岗
1.离职原因、离职时间点
2.上一份工作所在的部门、小组、小组人员数、小组内的分工
3.个人负责的目标,具体是哪方面的成本
4.为了降低专员成本,做了哪些方面的工作
偏向于机制、分析方法、思维,当下主要是对于部分高收入专员收入不合理的情况进行分析,可能是作弊、单价等,怎么去识别,识别到之后怎么去处理
(1)高收入人群识别(2)拆分高收入原因(3)线下排查这种是否正常
5.针对怎么识别高收入原因,怎么去解决发现的问题详述下
指标体系搭建思路,以及如何定义是不是导致高收入的原因,线下排查的几种结果,针对结果分别解决
6.对于人员的波动会有问题吗?
回答:存在风险。(1)判断数据呈现的实际结果是不是一个问题(2)是问题,需要调整需要管理者和前线沟通
改善:有这样的风险。但是从长远来看,这个事情肯定是要做的也是合理的,因为从经营者角度来看,主要是为了发现那些不合理收入、或者是潜在风险。
剩下的就是怎么做的问题,人员波动的原因是和大家之前的认知不一样了,和他之前的利益有冲突了,同时为了让对业务没有特别大的波动,需要逐步去做:(1)筛选的人群比例刚开始不要太大,整体不会有特别多波动,即使有波动也能很快补充专员,也会让专员逐渐对这个事情有认知(2)结合数据和线下判断,确实有问题,需提前沟通,eg:单价比市场和其他城市较高,管理者需要和专员沟通说明情况及可能的影响,其次有个缓冲期,不一定需要立即调整 (3)实在没办法接受,换更有竞争力的人·(4)专员视角来看,对于和市场的对比,自己心里肯定也会有数,在之前3k钱,其他公司2.8k,现在也调整到2.8k,自然也会接受。
7.这个项目的难点
回答:分析思路
改善:如何协同提高反馈质量
8.后续成本调优方面,还有哪些动作可做
回答:模型更加贴合业务
改善:设立之初的定位,规划-当下完成了什么-下一步的具体功能+原因+细节·
9.职业规划
回答:业务分析相关工作,过往工作经历+个人兴趣
10.还有什么想问
回答:工作内容/KPI/针对这个岗位还有哪些需要补充(业务策略部分没有体现出)
11.实际薪资及预期
相关文章:
面试|兴盛优选数据分析岗
1.离职原因、离职时间点 2.上一份工作所在的部门、小组、小组人员数、小组内的分工 3.个人负责的目标,具体是哪方面的成本 4.为了降低专员成本,做了哪些方面的工作 偏向于机制、分析方法、思维,当下主要是对于部分高收入专员收入不合理的情况…...
Redis(08)主从复制master-slave replication
文章目录 redis主从复制一. 配置文件的方式设置1. 主节点配置:2. 从节点1配置:3. 从节点2配置: 二. 命令的方式设置1. 创建服务2. 设置主从节点3. 测试 三. 从节点升级为主节点四. 查看主从关系 redis主从复制 Redis主从复制是将一个Redis实例的数据复制到多个Redis实例&#…...
被chatGPT割了一块钱韭菜
大家好,才是真的好。 chatGPT热度一直上升,让我萌生了一个胆大而创新的想法, 把chatGPT嵌入到Notes客户机中来玩。 考虑到我已经下载了一个chatGPT的Notes应用(请见《ChatGPT APIs for HCL DOMINO》),想着…...
vue3+ts+pinia+vite一次性全搞懂
vue3tspiniavite项目 一:新建一个vue3ts的项目二:安装一些依赖三:pinia介绍、安装、使用介绍pinia页面使用pinia修改pinia中的值 四:typescript的使用类型初识枚举 一:新建一个vue3ts的项目 前提是所处vue环境为vue3&…...
Apache安装与基本配置
1. 下载apache 地址:www.apache.org/download.cgi,选择“files for microsoft windows”→点击”ApacheHaus”→点击”Apache2.4 VC17”,选择x64/x86,点击右边download下面的图标。 2. 安装apache (1)把…...
哈夫曼树【北邮机试】
一、哈夫曼树 机试考察的最多的就是WPL,是围绕其变式展开考察。 哈夫曼树的构建是不断选取集合中最小的两个根节点进行合并,而且在合并过程中排序也会发生变化,因此最好使用优先队列来维护单调性,方便排序和合并。 核心代码如下…...
thinkphp:数值(保留小数点后N位,四舍五入,左侧补零,格式化货币,取整,生成随机数,数字与字母进行转换)
一、保留小数点后N位/类似四舍五入(以保留小数点后三位为准) number_format()函数:第一个参数为要格式化的数字,第二个参数为保留的小数位数 方法一: public function test() {$num 12.56789; // 待格式化的数字$r…...
用Flutter你得了解的七个问题
Flutter是Google推出的一款用于构建高性能、高保真度移动应用程序、Web和桌面应用程序的开源UI工具包。Flutter使用自己的渲染引擎绘制UI,为用户提供更快的性能和更好的体验。 Flutter使用Dart语言,具有强大的类型、效率和易学能力,基本上你…...
Nmap使用手册
Nmap语法 -A 全面扫描/综合扫描 nmap-A 127.0.0.1 扫描指定网段 nmap 127.0.0.1 nmap 127.0.0.1/24Nmap 主机发现 -sP ping扫描 nmap -sP 127.0.0.1-P0 无ping扫描备注:【协议1,协设2〕【目标】扫描 nmap -P0 127.0.0.1如果想知道是如何判断目标主机是否存在可…...
基于ResNet-attention的负荷预测
一、attention机制 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制。我们来看…...
华为校招机试 - 批量初始化次数(20230426)
题目描述 某部门在开发一个代码分析工具,需要分析模块之间的依赖关系,用来确定模块的初始化顺序是否有循环依赖等问题。 "批量初始化”是指一次可以初始化一个或多个模块。 例如模块1依赖模块2,模块3也依赖模块2,但模块1和3没有依赖关系,则必须先"批量初始化”…...
WhatsApp CRM:通过 CRM WhatsApp 集成向客户发送消息
WhatsApp CRM:通过 CRM WhatsApp 集成向客户发送消息 你是否在寻找一个支持WhatsApp整合的CRM?或者,你想将WhatsApp与你当前的CRM整合?这篇文章将回答你所有的问题。我们将首先了解什么是WhatsApp CRM,以及你需要知道…...
SOLIDWORKS Electrical无缝集成电气和机械设计
集成电气系统设计SOLIDWORKS⑧Electrical 解决方案借助专为工程专业设计的特定工具简化了电气铲品设计,并借助直观的用户界面更快地设计嵌入式电气系统。 与SOLIDWORKS 3DCAD的原生集成能提供更好的协作与生产效率,同时减少产品延迟、提高设计的一致性与…...
Numpy从入门到精通——数组变形|合并数组
这个专栏名为《Numpy从入门到精通》,顾名思义,是记录自己学习numpy的学习过程,也方便自己之后复盘!为深度学习的进一步学习奠定基础!希望能给大家带来帮助,爱睡觉的咋祝您生活愉快! 这一篇介绍《…...
DJ4-5 路由算法:LS 和 DV
目录 一、迪杰斯特拉算法 1. 术语定义 2. 算法描述 3. 举例说明 4. 构建从源节点到目的节点的路径 5. 构建最低费用路径树 6. 构建转发表 二、距离向量路由算法 1. 术语定义 2. 举例说明 3. 距离向量表 4. 更新距离向量表 5. 举例说明 三、距离向量路由算法 PLUS…...
python图像处理之形态学梯度、礼帽、黑帽
文章目录 简介实战 简介 腐蚀和膨胀是图像形态学处理的基本运算,这两种运算的复合运算构成了开和闭,而腐蚀、膨胀与原图之间的加减操作,则构成了形态学梯度、礼帽和黑帽计算。 由于这几种函数均基于腐蚀和膨胀,所以其参数均与开…...
千万级直播系统后端架构设计
1、架构方面 1.1 基本 该图是某大型在线演唱会的直播媒体架构简图。 可以看出一场大型活动直播涵盖的技术方案点非常庞杂,本节接下来的内容我们将以推拉流链路、全局智能调度、流量精准调度以及单元化部署,对这套直播方案做一个展开介绍。 1.2 推拉流链…...
ImageJ 用户手册——第五部分(菜单命令File,Edit)
这里写目录标题 菜单命令26. File26.1 New26.1.1 Image26.1.2 Hyperstack26.1.3 Text Window26.1.4 Internal Clipboard26.1.5 System Clipboard 26.2 Open26.3 Open Next26.4 Open Samples26.5 Open Recent26.6 Import26.6.1 Image Sequence26.6.2 Raw26.6.3 LUT26.6.4 Text I…...
nmap常用命令
一、nmap简介 Nmap,也就是Network Mapper。nmap是一个网络连接端扫描软件,用来扫描网上电脑开放的网络连接端。确定哪些服务运行在哪些连接端,并且推断计算机运行哪个操作系统(这是亦称 fingerprinting)。它是网络管理员必用的软件之一&…...
常用adb 命令
目录 一、常用简单的adb命令: 二、adb shell pm基本的命令: 三、adb shell am基本的命令: 四、关闭某项进程,以monkey为例: 五、最近12小时的资源情况: 六、录制屏幕命令: 七、截图命令&am…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
