大数据实战 --- 美团外卖平台数据分析
目录
开发环境
数据描述
功能需求
数据准备
数据分析
RDD操作
Spark SQL操作
创建Hbase数据表
创建外部表
统计查询
开发环境
Hadoop+Hive+Spark+HBase
启动Hadoop:start-all.sh
启动zookeeper:zkServer.sh start
启动Hive:
nohup hiveserver2 1>/dev/null 2>&1 &
beeline -u jdbc:hive2://192.168.152.192:10000
启动Hbase:
start-hbase.sh
hbase shell
启动Spark:
spark-shell
数据描述
meituan_waimai_meishi.csv 是美团外卖平台的部分外卖 SPU(Standard Product Unit , 标准产品单元)数据,包含了外卖平台某地区一时间的外卖信息。具体字段说明如下:

功能需求
数据准备
创建文件
hdfs dfs -mkdir -p /app/data/exam上传目录
hdfs dfs -put ./meituan_waimai_meishi.csv /app/data/exam查看文件行数
hdfs dfs -cat /app/data/exam/meituan_waimai_meishi.csv | wc -l
数据分析
RDD操作
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("exam").getOrCreate()val sc: SparkContext = spark.sparkContextval lines: RDD[String] = sc.textFile("hdfs://192.168.152.192:9000/app/data/exam/meituan_waimai_meishi.csv")val lines1: RDD[Array[String]] = lines.filter(x => x.startsWith("spu_id") == false).map(x => x.split(","))
lines1.map(x => (x(2), 1)).reduceByKey(_ + _).collect().foreach(println)
②统计每个店铺的总销售额。
lines1.map(x => (x(2), Try(x(5).toDouble).toOption.getOrElse(0.0) *Try(x(7).toInt).toOption.getOrElse(0))).reduceByKey(_ + _).collect().foreach(println) ③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其
//方法一lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *Try(x(7).toInt).toOption.getOrElse(0))).filter(x => x._3 > 0).groupBy(x => x._1).mapValues(value => value.toList.sortBy(x => -x._3).take(3)) //负号(-)降序.flatMapValues(x => x).collect().foreach(println)//方法二lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *Try(x(7).toInt).toOption.getOrElse(0))).filter(x => x._3 > 0).groupBy(x => x._1).flatMap(x => x._2.toList.sortBy(y => 0 - y._3).take(3)).foreach(println)//方法三lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *Try(x(7).toInt).toOption.getOrElse(0))).filter(x => x._3 > 0).groupBy(x => x._1).map(x => {var shop_name: String = x._1;var topThree: List[(String, String, Double)] = x._2.toList.sortBy(item => 0 - item._3).take(3);var shopNameAndSumMoney: List[String] = topThree.map(it => it._2 + " " + it._3);(shop_name, shopNameAndSumMoney)}).foreach(println) Spark SQL操作
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("exam").getOrCreate()val sc: SparkContext = spark.sparkContextval spuDF: DataFrame = spark.read.format("csv").option("header", true).load("hdfs://192.168.152.192:9000/app/data/exam/meituan_waimai_meishi.csv")spuDF.createOrReplaceTempView("sputb") ①统计每个店铺分别有多少商品(SPU)。
spark.sql("select * from sputb").show() spark.sql("select shop_name,count(shop_name) as num from sputb group by shop_name").show() ③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其 中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计。
spark.sql("select shop_name, sum(spu_price * month_sales) as sumMoney from sputb group by shop_name").show()
创建Hbase数据表
在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 spu 表,该表下有
create 'exam:spu','result' 创建外部表
请 在 Hive 中 创 建 数 据 库 spu_db


create database spu_db; 在 该 数 据 库 中 创 建 外 部 表 ex_spu 指 向 /app/data/exam 下的测试数据 ;
create external table if not exists ex_spu (spu_id string,shop_id string,shop_name string,category_name string,spu_name string,spu_price double,spu_originprice double,month_sales int,praise_num int,spu_unit string,spu_desc string,spu_image string
)
row format delimited fields terminated by ","
stored as textfile location "/app/data/exam"
tblproperties ("skip.header.line.count"="1"); 创建外部表 ex_spu_hbase 映射至 HBase 中的 exam:spu 表的 result 列族
create external table if not exists ex_spu_hbase
(key string,sales double,praise int
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with
serdeproperties ("hbase.columns.mapping"=":key,result:sales,result:praise")
tblproperties ("hbase.table.name"="exam:spu"); 统计查询
insert into ex_spu_hbase
select concat(tb.shop_id,tb.shop_name) as key, tb.sales,tb.praise from
(select shop_id,shop_name,sum(spu_price*month_sales) as sales, sum(praise_num) as praise
from ex_spu group by shop_id,shop_name) tb; hive > select * from ex_spu_hbase;hbase(main):007:0> scan 'exam:spu' 相关文章:
大数据实战 --- 美团外卖平台数据分析
目录 开发环境 数据描述 功能需求 数据准备 数据分析 RDD操作 Spark SQL操作 创建Hbase数据表 创建外部表 统计查询 开发环境 HadoopHiveSparkHBase 启动Hadoop:start-all.sh 启动zookeeper:zkServer.sh start 启动Hive: nohup …...
三大本土化战略支点,大陆集团扩大中国市场生态合作「朋友圈」
“在中国,大陆集团已经走过30余年的发展与耕耘历程,并在过去10年间投资了超过30亿欧元。中国市场也成为了我们重要的‘增长引擎’与‘定海神针’。未来,我们将继续深耕中国这个技术导向的市场。”4月19日上海车展上,大陆集团首席执…...
为什么停更ROS2机器人课程-2023-
机器人工匠阿杰肺腑之言: 我放弃了ROS2课程 真正的危机不是同行竞争,比如教育从业者相互竞争不会催生ChatGPT…… 技术变革的突破式发展通常是新势力带来的而非传统行业的升级改革。 2013年也就是10年前在当时主流视频网站开启分享: 比如 …...
【SpringCloud常见面试题】
SpringCloud常见面试题 1.微服务篇1.1.SpringCloud常见组件有哪些?1.2.Nacos的服务注册表结构是怎样的?1.3.Nacos如何支撑阿里内部数十万服务注册压力?1.4.Nacos如何避免并发读写冲突问题?1.5.Nacos与Eureka的区别有哪些ÿ…...
ChatGPT+智能家居在AWE引热议 OpenCPU成家电产业智能化降本提速引擎
作为家电行业的风向标和全球三大消费电子展之一,4月27日-30日,以“智科技、创未来”为主题的AWE 2023在上海新国际博览中心举行,本届展会展现了科技、场景等创新成果,为我们揭示家电与消费电子的发展方向。今年展馆规模扩大至14个…...
拷贝构造函数和运算符重载
文章目录 拷贝构造函数特点分析拷贝构造函数情景 赋值运算符重载运算符重载operator<运算符重载 赋值运算符前置和后置重载 拷贝构造函数 在创建对象的时候,是不是存在一种函数,使得能创建一个于已经存在的对象一模一样的新对象,那么接下…...
本周热门chatGPT之AutoGPT-AgentGPT,可以实现完全自主实现任务,附部署使用教程
AutoGPT 是一个实验性的开源应用程序,它由GPT-4驱动,但有别于ChatGPT的是, 这与ChatGPT的底层语言模型一致。 AutoGPT 的定位是将LLM的"思想"串联起来,自主地实现你设定的任何目标。 简单的说,你只用提出…...
Mysql 优化LEFT JOIN语句
1.首先说一下个人对LEFT JOIN 语句的看法,原先我是没注意到LEFT JOIN 会影响到性能的,因为我平时在项目开发中,是比较经常见到很多个关联表的语句的。 2.阿里巴巴手册说过,连接表的语句最好不超过3次,但是我碰到的项目…...
全栈成长-python学习笔记之数据类型
python数据类型 数字类型 类型类型转换整型 intint() 字符串类型转换 浮点型保留整数 int(3.14)3 int(3.94)3浮点型 floatfloat() #####字符串类型 类型类型转换字符串 strstr() 将其他数据类型转为字符串 布尔类型与空类型 布尔类型 类型类型转换布尔型 boolbool()将其他…...
面试|兴盛优选数据分析岗
1.离职原因、离职时间点 2.上一份工作所在的部门、小组、小组人员数、小组内的分工 3.个人负责的目标,具体是哪方面的成本 4.为了降低专员成本,做了哪些方面的工作 偏向于机制、分析方法、思维,当下主要是对于部分高收入专员收入不合理的情况…...
Redis(08)主从复制master-slave replication
文章目录 redis主从复制一. 配置文件的方式设置1. 主节点配置:2. 从节点1配置:3. 从节点2配置: 二. 命令的方式设置1. 创建服务2. 设置主从节点3. 测试 三. 从节点升级为主节点四. 查看主从关系 redis主从复制 Redis主从复制是将一个Redis实例的数据复制到多个Redis实例&#…...
被chatGPT割了一块钱韭菜
大家好,才是真的好。 chatGPT热度一直上升,让我萌生了一个胆大而创新的想法, 把chatGPT嵌入到Notes客户机中来玩。 考虑到我已经下载了一个chatGPT的Notes应用(请见《ChatGPT APIs for HCL DOMINO》),想着…...
vue3+ts+pinia+vite一次性全搞懂
vue3tspiniavite项目 一:新建一个vue3ts的项目二:安装一些依赖三:pinia介绍、安装、使用介绍pinia页面使用pinia修改pinia中的值 四:typescript的使用类型初识枚举 一:新建一个vue3ts的项目 前提是所处vue环境为vue3&…...
Apache安装与基本配置
1. 下载apache 地址:www.apache.org/download.cgi,选择“files for microsoft windows”→点击”ApacheHaus”→点击”Apache2.4 VC17”,选择x64/x86,点击右边download下面的图标。 2. 安装apache (1)把…...
哈夫曼树【北邮机试】
一、哈夫曼树 机试考察的最多的就是WPL,是围绕其变式展开考察。 哈夫曼树的构建是不断选取集合中最小的两个根节点进行合并,而且在合并过程中排序也会发生变化,因此最好使用优先队列来维护单调性,方便排序和合并。 核心代码如下…...
thinkphp:数值(保留小数点后N位,四舍五入,左侧补零,格式化货币,取整,生成随机数,数字与字母进行转换)
一、保留小数点后N位/类似四舍五入(以保留小数点后三位为准) number_format()函数:第一个参数为要格式化的数字,第二个参数为保留的小数位数 方法一: public function test() {$num 12.56789; // 待格式化的数字$r…...
用Flutter你得了解的七个问题
Flutter是Google推出的一款用于构建高性能、高保真度移动应用程序、Web和桌面应用程序的开源UI工具包。Flutter使用自己的渲染引擎绘制UI,为用户提供更快的性能和更好的体验。 Flutter使用Dart语言,具有强大的类型、效率和易学能力,基本上你…...
Nmap使用手册
Nmap语法 -A 全面扫描/综合扫描 nmap-A 127.0.0.1 扫描指定网段 nmap 127.0.0.1 nmap 127.0.0.1/24Nmap 主机发现 -sP ping扫描 nmap -sP 127.0.0.1-P0 无ping扫描备注:【协议1,协设2〕【目标】扫描 nmap -P0 127.0.0.1如果想知道是如何判断目标主机是否存在可…...
基于ResNet-attention的负荷预测
一、attention机制 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制。我们来看…...
华为校招机试 - 批量初始化次数(20230426)
题目描述 某部门在开发一个代码分析工具,需要分析模块之间的依赖关系,用来确定模块的初始化顺序是否有循环依赖等问题。 "批量初始化”是指一次可以初始化一个或多个模块。 例如模块1依赖模块2,模块3也依赖模块2,但模块1和3没有依赖关系,则必须先"批量初始化”…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
