当前位置: 首页 > news >正文

Flink反压如何排查

Flink反压利用了网络传输和动态限流。Flink的任务的组成由流和算子组成,那么流中的数据在算子之间转换的时候,会放入分布式的阻塞队列中。当消费者的阻塞队列满的时候,则会降低生产者的处理速度。
在这里插入图片描述

如上图所示,当Task C 的数据处理速度发生异常的时候,Receive Buffer会呈现出队列满的情况,Task B发送端就会感知到这一点,因为发不过去了吗。然后把数据的发送速度降低,以此类推,整个反压会一直从下到上传递到Source端;反之,当task处理能力有提升后,会在此反馈到Source Task,数据发送和读取的速率就会升高,提高了整个flink任务的处理能力以及容错能力。
当任务出现反压时,如果你的上游是类似kafka的消息系统,很明显的表现就是消费速度过慢,kafka消费出现积压。如果业务对数据延迟要求不搞,那么反压其实没有很大的影响。但是对于规模很大的集群中的大作业,反而反压会造成很严重的问题。首先状态会变大,因为数据大规模堆积在系统中,这些暂时不被处理的数据,同样会被放到状态中。另外,Flink会因为数据堆积和处理速度变慢导致Checkpoint超时。Checkpoint超时的话,checkpoint是我们数据一致性的关键所在,如果一直checkpoint超时,会导致kafka lag一直居高不下,一直失败,一直失败,导致状态变大。有可能造成OOM导致JOB失败。此时重新消费数据有可能会出现重复消费数据的可能,严重的会导致数据不一致的产生。

那么我们如何判断是否反压呢,我们可以在flink任务的后台页面进行查看
在默认的设置下,Flink的TaskManager会每隔50ms触发一次反压状态检测,共检测100次,并将结果反馈给JobManager,最后由JobManager进行计算反压的比例,然后进行展示。
这个比例展示逻辑如下:
OK:0 <= Ratio <= 0.10,正常
LOW:0.10 < Ratio <= 0.50,一般
HIGH:0.5 < Ratio <= 1,严重
在这里插入图片描述
在这里插入图片描述

要解决反压首先要做的是定位到造成反压的节点,这主要有两种办法:

  1. 通过 Flink Web UI 自带的反压监控面板
  2. 通过 Flink Task Metrics
    前者比较容易上手,适合简单分析,后者则提供了更加丰富的信息,适合用于监控系统。因为反压会向上游传到,这两种方式都要求我们从Source节点到Sink的逐一排查。
    如果出于反压状态,那么有两种可能性:
  3. 该节点的发送速率跟不上它产生数据的速率
  4. 下游的节点接速率较慢,通过反压机制限制了该节点的发送速率
    如果是第一种状况,那么该节点则为反压的根源节点,它是从Source Task到SInk Task 第一个出现反压的节点
    如果是第二种情况,则需要排查下游节点
    值得注意的是,反压的根源节点并不一定在反压面板出现高反压。因为反压面板监控的是发送端,如果某个节点是性能瓶颈并不会导致它本身出现高反压,而是导致它的上游出现高反压。总体来看,如果我们找到第一个出现反压的节点,那么反压根源要么就是这个节点,要么是它紧接着的下有节点。
    怎么区分这两种情况呢,通过监控面板是无法给出判断的。这个时候就可以根据 Flink的指标监控来寻找是那一个sub task出现了反压的问题。
    我们在监控反压时会用到的Metrics主要和Channel 接收端的buffer使用率有关,最有用的是以下几个Metrics:
    在这里插入图片描述

TaskManager传输数据时,不同的TaskManager上的两个SubTask间通常根据key的数量有多个Channel,这些Channel会复用同一个TaskManager级别的TCP链接,并且共享接收端SubTask级别的BufferPool。
TaskManager 传输数据时,不同的TaskManager上的两个SubTask间通常根据key的数量有多个channel,这些channel会复用同一个TaskManager级别的TCP链接,并且共享接收端SubTask级别的Buffer Pool。
在接收端,每个Channel在初始阶段会分配固定数量的 Exclusive Buffer,这些Buffer会被用于存储接收到的数据,交给Operator使用后再次被释放。Channel接收端空闲的Buffer数量成为Credit,Credit会被定时同步给发送端被后者用于决定发送多少个Buffer的数据。
在流量较大时,Channel的Exclusive Buffer可能会被写满,此时Flink会向Buffer Pool 申请剩余的Floating Buffer。这些Floating Buffer属于备用的Buffer,哪个Channel需要就去哪里。而在Channel 发送端一个Subtask所有的Channel会共享同一个Buffer Pool,这边就没有区分Exclusive Buffer和Floating Buffer。
在这里插入图片描述

outPoolUsage 和 inPoolUsage 同为低或同为高分别表明当前 Subtask 正常或处于被下游反压,这应该没有太多疑问。而比较有趣的是当 outPoolUsage 和 inPoolUsage 表现不同时,这可能是出于反压传导的中间状态或者表明该 Subtask 就是反压的根源。
如果一个 Subtask 的 outPoolUsage 是高,通常是被下游 Task 所影响,所以可以排查它本身是反压根源的可能性。如果一个 Subtask 的 outPoolUsage 是低,但其 inPoolUsage 是高,则表明它有可能是反压的根源。因为通常反压会传导至其上游,导致上游某些 Subtask 的 outPoolUsage 为高,我们可以根据这点来进一步判断。值得注意的是,反压有时是短暂的且影响不大,比如来自某个 Channel 的短暂网络延迟或者 TaskManager 的正常 GC,这种情况下我们可以不用处理。
对于 Flink 1.9 及以上版本,除了上述的表格,我们还可以根据 floatingBuffersUsage/exclusiveBuffersUsage 以及其上游 Task 的 outPoolUsage 来进行进一步的分析一个 Subtask 和其上游 Subtask 的数据传输。
在这里插入图片描述

通常来说,floatingBuffersUsage 为高则表明反压正在传导至上游,而 exclusiveBuffersUsage 则表明了反压是否存在倾斜(floatingBuffersUsage 高、exclusiveBuffersUsage 低为有倾斜,因为少数 channel 占用了大部分的 Floating Buffer)。
至此,我们已经有比较丰富的手段定位反压的根源是出现在哪个节点,但是具体的原因还没有办法找到。另外基于网络的反压 metrics 并不能定位到具体的 Operator,只能定位到 Task。特别是 embarrassingly parallel(易并行)的作业(所有的 Operator 会被放入一个 Task,因此只有一个节点),反压 metrics 则派不上用场。
定位到反压节点后,分析造成原因的办法和我们分析一个普通程序的性能瓶颈的办法是十分类似的,可能还要更简单一点,因为我们要观察的主要是 Task Thread。
在实践中,很多情况下的反压是由于数据倾斜造成的,这点我们可以通过 Web UI 各个 SubTask 的 Records Sent 和 Record Received 来确认,另外 Checkpoint detail 里不同 SubTask 的 State size 也是一个分析数据倾斜的有用指标。
此外,最常见的问题可能是用户代码的执行效率问题(频繁被阻塞或者性能问题)。最有用的办法就是对 TaskManager 进行 CPU profile,从中我们可以分析到 Task Thread 是否跑满一个 CPU 核:如果是的话要分析 CPU 主要花费在哪些函数里面,比如我们生产环境中就偶尔遇到卡在 Regex 的用户函数(ReDoS);如果不是的话要看 Task Thread 阻塞在哪里,可能是用户函数本身有些同步的调用,可能是 checkpoint 或者 GC 等系统活动导致的暂时系统暂停。
当然,性能分析的结果也可能是正常的,只是作业申请的资源不足而导致了反压,这就通常要求拓展并行度。值得一提的,在未来的版本 Flink 将会直接在 WebUI 提供 JVM 的 CPU 火焰图[5],这将大大简化性能瓶颈的分析。
另外 TaskManager 的内存以及 GC 问题也可能会导致反压,包括 TaskManager JVM 各区内存不合理导致的频繁 Full GC 甚至失联。推荐可以通过给 TaskManager 启用 G1 垃圾回收器来优化 GC,并加上 -XX:+PrintGCDetails 来打印 GC 日志的方式来观察 GC 的问题。

参考:
https://maimai.cn/article/detail?fid=1372302272&efid=s1cKvvDRtJYzA_5vRPJ7og

相关文章:

Flink反压如何排查

Flink反压利用了网络传输和动态限流。Flink的任务的组成由流和算子组成&#xff0c;那么流中的数据在算子之间转换的时候&#xff0c;会放入分布式的阻塞队列中。当消费者的阻塞队列满的时候&#xff0c;则会降低生产者的处理速度。 如上图所示&#xff0c;当Task C 的数据处…...

windows无法访问指定设备路径或文件怎么办?2个解决方案

有时候Win10电脑打不开程序或文件&#xff0c;windows无法访问指定设备路径或文件该怎么办&#xff1f;原因是什么呢&#xff1f;一般导致这种情况的出现&#xff0c;大多是因为我们的电脑缺乏相应的查看权限&#xff0c;我们只需要通过赋予权限就可以解决这个难题了。 操作环境…...

冷知识|鹤顶红还能用来修长城?

大家好&#xff0c;我是建模助手。 在上篇浅浅地蹭了波热点之后&#xff0c;我灵机一动&#xff0c;倒不如也搞一搞建筑方面的冷知识&#xff1f;冷热搭配&#xff0c;事半功倍... 问问大家&#xff0c;如果谈起古建筑&#xff0c;关键词都有什么&#xff1f;是庄严、震撼、壮…...

【GD32F427开发板试用】在IAR环境中移植RTX5

本篇文章来自极术社区与兆易创新组织的GD32F427开发板评测活动&#xff0c;更多开发板试用活动请关注极术社区网站。作者&#xff1a;吴金刚 0.前言 首先感谢极术社区和兆易创新给了这次试用GD32F427开发板的机会。 板子做的虽然简约&#xff0c;但是自带了GD-link所以一根USB…...

MySQl学习(从入门到精通15)

MySQl学习&#xff08;从入门到精通15&#xff09;第 18 章_MySQL 8 其它新特性1. MySQL 8 新特性概述1. 1 MySQL 8. 0 新增特性1. 2 MySQL 8. 0 移除的旧特性2. 新特性 1 &#xff1a;窗口函数2. 1 使用窗口函数前后对比2. 2 窗口函数分类2. 3 语法结构2. 4 分类讲解1. 序号函…...

前端构建工具 Vite

文章目录参考环境构建工具构建工具的主要功能目前主流的前端构建工具Vite为什么使用 Vite冷启动WebpackVite热更新优化热更新优化预构建依赖Webpack VS ViteVite 的缺点首屏性能懒加载与 Vite 相关的基本操作获取create-vite创建项目Project nameSelect a frameworkSelect a va…...

若依框架---PageHelper分页(十)

在前几天的文章中&#xff0c;我们介绍了PageHelper的分页方法&#xff0c;研读代码定位到了ExecutorUtil.pageQuery(...)方法&#xff0c;并阅读到了其中的部分代码。 今天我们将看到重要的SQL修改代码。 getPageSql 我们接着看代码&#xff1a; if (!dialect.beforePage(…...

苹果手机专用蓝牙耳机有哪些?与iphone兼容性好的蓝牙耳机

蓝牙耳机摆脱了线缆的束缚&#xff0c;在地以各种方式轻松通话。自从蓝牙耳机问世以来&#xff0c;一直是行动商务族提升效率的好工具&#xff0c;苹果产品一直都是受欢迎的数码产品&#xff0c;下面推荐几款与iphone兼容性好的蓝牙耳机。 第一款&#xff1a;南卡小音舱蓝牙耳…...

CS-TPGS;壳聚糖修饰维生素E;Chitosan-g-TPGS

Chitosan-g-TPGS,CS-TPGS壳聚糖修饰维生素E聚乙二醇1000琥珀酸酯外观呈现白色固体或者粘稠液体。长期保存需要在-20℃,避光,干燥条件下存放&#xff0c;注意取用一定要干燥,避免频繁溶冻。 维生素E聚乙二醇琥珀酸酯(简称TPGS)是维生素E的水溶性衍生物,由维生素E琥珀酸酯的羧基与…...

easyx的基本使用(万字解析)

easyx的基本使用一.基本框架1.创建文件2.创建窗体-initgraph,closegraph,getchar二.简单的绘制1.圆形-circle2.坐标系统-setorigin,setaspectratio三.简单图形1.绘制点-putpixel2.简单的直线-line3.矩形-rectangle4.椭圆-ellipse5.圆角矩形-roundrect6.扇形-pie7.圆弧-arc四.多…...

基于OpenCV 的车牌识别

基于OpenCV 的车牌识别 车牌识别是一种图像处理技术&#xff0c;用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于 OpenCV 编写 Python 代码来完成这一任务。 车牌识别的相关步骤 1. 车牌检测&#xff1a;第一步是从汽车上检测车牌所在位置。我们将使用…...

C#【必备技能篇】Winform跨线程更新进度条的实例

文章目录实例一&#xff1a;【方便理解&#xff0c;常用&#xff01;】源码&#xff1a;运行效果&#xff1a;实例二&#xff1a;【重在理解代码本身】源码&#xff1a;运行效果&#xff1a;参考&#xff1a;实例一&#xff1a;【方便理解&#xff0c;常用&#xff01;】 跨线…...

(1分钟速通面试) 矩阵分解相关内容

矩阵分解算法--总结QR分解 LU分解本篇博客总结一下QR分解和LU分解&#xff0c;这些都是矩阵加速的操作&#xff0c;在slam里面还算是比较常用的内容&#xff0c;这个地方在isam的部分出现过。(当然isam也是一个坑&#xff0c;想要出点创新成果的话 可能是不太现实的 短期来讲 哈…...

this指向

&#xff08;1&#xff09;在全局环境中的this——window 无论是否在严格模式下&#xff0c;在全局执行环境中&#xff08;在任何函数体外部&#xff09;this 都指向全局对象。 "use strict"console.log(this); //windowconsole.log(thiswindow);//true &#xff08…...

安卓小游戏:小板弹球

安卓小游戏&#xff1a;小板弹球 前言 这个是通过自定义View实现小游戏的第三篇&#xff0c;是小时候玩的那种五块钱的游戏机上的&#xff0c;和俄罗斯方块很像&#xff0c;小时候觉得很有意思&#xff0c;就模仿了一下。 需求 这里的逻辑就是板能把球弹起来&#xff0c;球…...

7、单行函数

文章目录1 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类2 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换3 字符串函数4 日期和时间函数4.1 获取日期、时间4.2 日期与时间戳的转换4.3 获取月份、星期、星…...

华为机试题:HJ56 完全数计算(python)

文章目录博主精品专栏导航知识点详解1、input()&#xff1a;获取控制台&#xff08;任意形式&#xff09;的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() &#xff1a;打印输出。3、整型int() &#xff1a;将指定进制&#xf…...

opencv——傅里叶变换、低通与高通滤波及直方图等操作

1、傅里叶变换a、傅里叶变换原理时域分析&#xff1a;以时间为参照进行分析。频域分析&#xff1a;相当于上帝视角一样&#xff0c;看事物层次更高&#xff0c;时域的运动在频域来看就是静止的。eg&#xff1a;投球——时域分析&#xff1a;第1分钟投了3分&#xff0c;第2分钟投…...

【NGINX入门指北】 进阶篇

nginx 进阶篇 文章目录nginx 进阶篇一、Nginx Proxy 服务器1、代理原理2、proxy代理3、proxy缓存一、Nginx Proxy 服务器 1、代理原理 正向代理 内网客户机通过代理访问互联网&#xff0c;通常要设置代理服务器地址和端口。 反向代理 外网用户通过代理访问内网服务器&…...

Python中关于@修饰符、yeild关键词、next()函数的基本功能简述

关于修饰符&#xff1a;其实就是将修饰符下面的函数当成参数传给它上面的函数。 def a(x):print(a)adef b():print(b) 其效果等价为&#xff1a; def a(x):print(a)def b():print(b)a(b())有个记忆诀窍&#xff0c;的下面哪个函数最近&#xff0c;谁就是儿子&#xff0c;谁就…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...