基于OpenCV 的车牌识别
基于OpenCV 的车牌识别

车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于 OpenCV 编写 Python 代码来完成这一任务。
车牌识别的相关步骤
1. 车牌检测:第一步是从汽车上检测车牌所在位置。我们将使用 OpenCV 中矩形的轮廓检测来寻找车牌。如果我们知道车牌的确切尺寸,颜色和大致位置,则可以提高准确性。通常,也会将根据摄像机的位置和该特定国家 / 地区所使用的车牌类型来训练检测算法。但是图像可能并没有汽车的存在,在这种情况下我们将先进行汽车的,然后是车牌。
2. 字符分割:检测到车牌后,我们必须将其裁剪并保存为新图像。同样,这可以使用 OpenCV 来完成。
3. 字符识别:现在,我们在上一步中获得的新图像肯定可以写上一些字符(数字 / 字母)。因此,我们可以对其执行 OCR(光学字符识别)以检测数字。
1. 车牌检测
让我们以汽车的样本图像为例,首先检测该汽车上的车牌。然后,我们还将使用相同的图像进行字符分割和字符识别。如果您想直接进入代码而无需解释,则可以向下滚动至此页面的底部,提供完整的代码,或访问以下链接。https://github.com/GeekyPRAVEE/OpenCV-Projects/blob/master/LicensePlateRecoginition.ipynb
在次使用的测试图像如下所示。

图片来源链接:https : //rb.gy/lxmiuv
第 1 步: 将图像调整为所需大小,然后将其灰度。相同的代码如下
img = cv2.resize(img, (620,480) )
调整大小后,可以避免使用较大分辨率的图像而出现的以下问题,但是我们要确保在调整大小后,车号牌仍保留在框架中。在处理图像时如果不再需要处理颜色细节,那么灰度变化就必不可少,这加快了其他后续处理的速度。完成此步骤后,图像将像这样被转换

步骤 2:每张图片都会包含有用和无用的信息,在这种情况下,对于我们来说,只有牌照是有用的信息,其余的对于我们的程序几乎是无用的。这种无用的信息称为噪声。通常,使用双边滤波(模糊)会从图像中删除不需要的细节。
gray = cv2.bilateralFilter(gray, 13, 15, 15)
语法为 destination_image = cv2.bilateralFilter(source_image, diameter of pixel, sigmaColor, sigmaSpace)。我们也可以将 sigma 颜色和 sigma 空间从 15 增加到更高的值,以模糊掉更多的背景信息,但请注意不要使有用的部分模糊。输出图像如下所示可以看到该图像中的背景细节(树木和建筑物)模糊了。这样,我们可以避免程序处理这些区域。

步骤 3:下一步是我们执行边缘检测的有趣步骤。有很多方法可以做到,最简单和流行的方法是使用 OpenCV 中的 canny edge 方法。执行相同操作的行如下所示
edged = cv2.Canny(gray, 30, 200) #Perform Edge detection
语法为 destination_image = cv2.Canny(source_image,thresholdValue 1,thresholdValue 2)。阈值谷 1 和阈值 2 是最小和最大阈值。仅显示强度梯度大于最小阈值且小于最大阈值的边缘。结果图像如下所示

步骤 4:现在我们可以开始在图像上寻找轮廓
contours=cv2.findContours(edged.copy(),cv2.RETR_TREE,
一旦检测到计数器,我们就将它们从大到小进行排序,并只考虑前 10 个结果而忽略其他结果。在我们的图像中,计数器可以是具有闭合表面的任何事物,但是在所有获得的结果中,牌照号码也将存在,因为它也是闭合表面。
为了过滤获得的结果中的车牌图像,我们将遍历所有结果,并检查其具有四个侧面和闭合图形的矩形轮廓。由于车牌肯定是四边形的矩形。
for c in cnts:
找到正确的计数器后,我们将其保存在名为 screenCnt 的变量中,然后在其周围绘制一个矩形框,以确保我们已正确检测到车牌。

步骤 5:现在我们知道车牌在哪里,剩下的信息对我们来说几乎没有用。因此,我们可以对整个图片进行遮罩,除了车牌所在的地方。相同的代码如下所示
# Masking the part other than the number plate
被遮罩的新图像将如下所示

2. 字符分割
车牌识别的下一步是通过裁剪车牌并将其保存为新图像,将车牌从图像中分割出来。然后,我们可以使用此图像来检测其中的字符。下面显示了从主图像裁剪出 ROI(感兴趣区域)图像的代码
# Now crop
结果图像如下所示。通常添加到裁剪图像中,如果需要,我们还可以对其进行灰色处理和边缘化。这样做是为了改善下一步的字符识别。但是我发现即使使用原始图像也可以正常工作。

3. 字符识别
该车牌识别的最后一步是从分割的图像中实际读取车牌信息。就像前面的教程一样,我们将使用 pytesseract 包从图像读取字符。相同的代码如下
#Read the number plate

原始图像上印有数字 “CZ20FSE”,并且我们的程序检测到它在 jupyter 笔记本上打印了相同的值。
车牌识别失败案例
车牌识别的完整代码,其中包含程序和我们用来检查程序的测试图像。要记住,此方法的结果将不准确。准确度取决于图像的清晰度,方向,曝光等。为了获得更好的结果,您可以尝试同时实现机器学习算法。

这个案例中我们的程序能够正确检测车牌并进行裁剪。但是,Tesseract 库无法正确识别字符。OCR 已将其识别为 “MH13CD 0036”,而不是实际的 “ MH 13 CD 0096”。通过使用更好的方向图像或配置 Tesseract 引擎,可以纠正此类问题。
其他成功的例子
大多数时候,图像质量和方向都是正确的,程序能够识别车牌并从中读取编号。下面的快照显示了获得的成功结果。


完整代码
#@programming_fever
Github 链接 - https: //github.com/GeekyPRAVEE/OpenCV-Projects/blob/master/LicensePlateRecoginition.ipynb
相关文章:
基于OpenCV 的车牌识别
基于OpenCV 的车牌识别 车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于 OpenCV 编写 Python 代码来完成这一任务。 车牌识别的相关步骤 1. 车牌检测:第一步是从汽车上检测车牌所在位置。我们将使用…...
C#【必备技能篇】Winform跨线程更新进度条的实例
文章目录实例一:【方便理解,常用!】源码:运行效果:实例二:【重在理解代码本身】源码:运行效果:参考:实例一:【方便理解,常用!】 跨线…...
(1分钟速通面试) 矩阵分解相关内容
矩阵分解算法--总结QR分解 LU分解本篇博客总结一下QR分解和LU分解,这些都是矩阵加速的操作,在slam里面还算是比较常用的内容,这个地方在isam的部分出现过。(当然isam也是一个坑,想要出点创新成果的话 可能是不太现实的 短期来讲 哈…...
this指向
(1)在全局环境中的this——window 无论是否在严格模式下,在全局执行环境中(在任何函数体外部)this 都指向全局对象。 "use strict"console.log(this); //windowconsole.log(thiswindow);//true (…...
安卓小游戏:小板弹球
安卓小游戏:小板弹球 前言 这个是通过自定义View实现小游戏的第三篇,是小时候玩的那种五块钱的游戏机上的,和俄罗斯方块很像,小时候觉得很有意思,就模仿了一下。 需求 这里的逻辑就是板能把球弹起来,球…...
7、单行函数
文章目录1 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类2 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换3 字符串函数4 日期和时间函数4.1 获取日期、时间4.2 日期与时间戳的转换4.3 获取月份、星期、星…...
华为机试题:HJ56 完全数计算(python)
文章目录博主精品专栏导航知识点详解1、input():获取控制台(任意形式)的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() :打印输出。3、整型int() :将指定进制…...
opencv——傅里叶变换、低通与高通滤波及直方图等操作
1、傅里叶变换a、傅里叶变换原理时域分析:以时间为参照进行分析。频域分析:相当于上帝视角一样,看事物层次更高,时域的运动在频域来看就是静止的。eg:投球——时域分析:第1分钟投了3分,第2分钟投…...
【NGINX入门指北】 进阶篇
nginx 进阶篇 文章目录nginx 进阶篇一、Nginx Proxy 服务器1、代理原理2、proxy代理3、proxy缓存一、Nginx Proxy 服务器 1、代理原理 正向代理 内网客户机通过代理访问互联网,通常要设置代理服务器地址和端口。 反向代理 外网用户通过代理访问内网服务器&…...
Python中关于@修饰符、yeild关键词、next()函数的基本功能简述
关于修饰符:其实就是将修饰符下面的函数当成参数传给它上面的函数。 def a(x):print(a)adef b():print(b) 其效果等价为: def a(x):print(a)def b():print(b)a(b())有个记忆诀窍,的下面哪个函数最近,谁就是儿子,谁就…...
结合Coverity扫描Spring Boot项目进行Path Manipulation漏洞修复
本篇介绍使用Coverity 扫描基于Spring Boot 项目中的Path Manipulation 漏洞, 进而解决风险,并且可以通过扫描。 什么样的代码会被扫描有路径操纵风险? 在Spring Boot 项目中, 实验了如下的场景: 1. Control 中 file path 作为参数传递的会被扫描,单纯服务方法不会 场…...
【FFMPEG源码分析】从ffplay源码摸清ffmpeg框架(一)
ffplay入口 ffmpeg\fftools\ffplay.c int main(int argc, char **argv) {/*******************start 动态库加载/网络初始化等**************/int flags;VideoState *is;init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/* regis…...
C++蓝桥杯 基础练习,高精度加法,输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。
C蓝桥杯 基础练习,高精度加法 问题描述 输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储。对于这种问题,一般使用数组来处理。 定义一…...
MySQL面试题:SQL语句的基本语法
MySQL目录一、数据库入门1. 数据管理技术的三个阶段2. 关系型数据库与非关系型数据库3. 四大非关系型数据库a. 基于列的数据库(column-oriented)b. 键值对存储(Key-Value Stores)c. 文档存储(Document Storesÿ…...
Fluid-数据编排能力原理解析
前言本文对Fluid基础功能-数据编排能力进行原理解析。其中涉及到Fluid架构和k8s csi driver相关知识。建议先了解相关概念,为了便于理解,本文使用JuiceFS作为后端runtime引擎。原理概述Fuild数据编排能力,主要是在云原生环境中,能…...
并发线程、锁、ThreadLocal
并发编程并发编程Java内存模型(JMM)并发编程核心问题—可见性、原子性、有序性volatile关键字原子性原子类CAS(Compare-And-Swap 比较并交换)ABA问题Java中的锁乐观锁和悲观锁可重入锁读写锁分段锁自旋锁共享锁/独占锁公平锁/非公平锁偏向锁/轻量级锁/重…...
CMMI-结项管理
结项管理(ProjectClosing Management, PCM)是指在项目开发工作结束后,对项目的有形资产和无形资产进行清算;对项目进行综合评估;总结经验教训等。结项管理过程域是SPP模型的重要组成部分。本规范阐述了结项管理的规程&…...
网络通信协议是什么?
网络通信基本模式 常见的通信模式有如下2种形式:Client-Server(CS) 、 Browser/Server(BS) 实现网络编程关键的三要素 IP地址:设备在网络中的地址,是唯一的标识。 端口:应用程序在设备中唯一的标识。 协议: 数据在网络中传输的…...
阶段5:Java分布式与微服务实战
目录 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 2、配置文件 3、启动注解 一、Eureka-server模块开发 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 父项目依赖:cloud-mall-practice springboot的…...
我的创作纪念日
目录 机缘 收获 日常 憧憬 机缘 其实本来从大一上学期后半段(2017)就开始谢谢零星的博客,只不过当时是自己用hexo搭建了一个小网站,还整了个域名:jiayoudangdang.top,虽然这个早就过期; 后来发现了CSDNÿ…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门  协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
