深度学习超参数调整介绍
文章目录
- 深度学习超参数调整介绍
- 1. 学习率
- 2. 批大小
- 3. 迭代次数
- 4. 正则化
- 5. 网络结构
- 总结
深度学习超参数调整介绍
深度学习模型的性能很大程度上取决于超参数的选择。超参数是指在训练过程中需要手动设置的参数,例如学习率、批大小、迭代次数、网络结构等等。选择合适的超参数可以提高模型的准确率和泛化能力。本教程将介绍一些常用的超参数和调参技巧,帮助您在深度学习项目中取得更好的效果。
1. 学习率
学习率是指在梯度下降算法中更新权重时的步长。学习率过小会导致模型收敛缓慢,而学习率过大会导致模型在极小值点附近震荡或发散。一般来说,初始学习率可以设置为0.01,如果模型训练不稳定,可以尝试降低学习率。
调参技巧:
- 学习率衰减:可以通过逐步减小学习率的方式来提高模型的准确率和稳定性。例如,可以设置学习率为0.01,每经过10个epoch就将学习率除以10。
- 学习率调度器:许多深度学习框架都提供了学习率调度器,可以根据训练过程中的指标自动调整学习率。例如,在PyTorch中,可以使用
torch.optim.lr_scheduler
模块中的ReduceLROnPlateau
调度器。
2. 批大小
批大小是指每次更新模型时使用的样本数量。较小的批大小可以提高模型的收敛速度,但会导致训练过程中的噪声增加。较大的批大小可以减少噪声,但会占用更多的内存。
调参技巧:
- 尝试不同的批大小:通常可以尝试使用小批大小(例如16或32)和大批大小(例如128或256)来进行实验,并选择效果最好的批大小。
- 内存限制:如果内存限制较小,可以尝试减小批大小以避免内存溢出。
3. 迭代次数
迭代次数是指模型在训练集上迭代的次数。过少的迭代次数会导致模型欠拟合,而过多的迭代次数会导致模型过拟合。
调参技巧:
- 早停法:可以在验证集上监测模型的性能,并在性能不再提高时停止训练,避免过拟合。
- 自适应迭代次数:可以使用一些自适应算法来调整迭代次数。例如,可以使用随机梯度下降(SGD)的
LearningRateScheduler
,根据模型在验证集上的性能动态调整迭代次数。 - 模型检查点:为了避免训练中断或出现其他问题,可以设置模型检查点,定期保存模型的状态,以便可以在训练中断后恢复训练。
4. 正则化
正则化是一种防止过拟合的方法,可以通过增加模型的复杂度来减少过拟合。常用的正则化方法包括L1正则化、L2正则化和dropout等。
调参技巧:
- 正则化系数:正则化系数控制正则化的强度。较大的正则化系数可以减少过拟合,但可能会降低模型的准确率。可以尝试不同的正则化系数,选择效果最好的。
- dropout概率:dropout可以随机关闭一些神经元,以避免过拟合。dropout概率控制关闭神经元的比例。较小的dropout概率可能无法有效减少过拟合,而较大的dropout概率可能会影响模型的准确率。可以尝试不同的dropout概率,选择效果最好的。
5. 网络结构
网络结构是指模型的层数、每层的节点数、激活函数等等。选择合适的网络结构可以提高模型的准确率和泛化能力。
调参技巧:
- 层数和节点数:可以尝试增加或减少网络的层数和每层的节点数,选择效果最好的结构。
- 激活函数:不同的激活函数适用于不同类型的问题。例如,sigmoid函数适用于二分类问题,而ReLU函数适用于多分类问题。可以尝试不同的激活函数,选择效果最好的。
总结
深度学习模型的超参数对模型的性能有很大影响,需要进行仔细调整。本教程介绍了一些常用的超参数和调参技巧,希望能够帮助您在深度学习项目中取得更好的效果。
相关文章:
深度学习超参数调整介绍
文章目录 深度学习超参数调整介绍1. 学习率2. 批大小3. 迭代次数4. 正则化5. 网络结构总结 深度学习超参数调整介绍 深度学习模型的性能很大程度上取决于超参数的选择。超参数是指在训练过程中需要手动设置的参数,例如学习率、批大小、迭代次数、网络结构等等。选择…...

Bootloader
本篇不作太过的技术了解,仅可作为初学者的参考。用嘴简单的语言讲清楚一件事。 项目中遇到Bootloader升级MCU,我很好这是什么软件,逻辑是什么,怎么升级的。 术语及定义 指纹信息fingerprint诊断仪用于标识特定的下载尝试的信息 …...
安卓开发_广播机制_广播的最佳实践:实现强制下线功能
安卓开发_广播机制_广播的最佳实践:实现强制下线功能 ActivityCollector类用于管理所有的ActivityBaseActivity类作为所有Activity的父类创建一个LoginActivity来作为登录界面布局LoginActivity 在MainActivity中加入强制下线功能布局MainActivity在BaseActivity中注…...

国民技术N32G430开发笔记(10)- IAP升级 Application 的制作
IAP升级 Application 的制作 1、App程序跟Bootloader程序最大的区别就是, 程序的执行地址变成了之前flash设定的0x08006000处, 大小限制为20KB 所以修改Application工程的ld文件 origin 改成 0x08006000 length 改成0x5000 烧录是起始地址也要改为x0x…...

[计算机图形学]材质与外观(前瞻预习/复习回顾)
一、图形学中的材质 不同的物体表面有着不同的材质,而不同的材质意味着它们与光线的作用不同。那么我们之前在介绍辐射度量学和渲染方程提到过其中一个函数,叫做BRDF,而在实际上,也就是BRDF定义了不同的材质。BRDF决定了光如何被反…...

Java 的简要介绍及开发环境的搭建(超级详细)
图片来源于互联网 目录 | CONTENT Java 简介 一、什么是 Java 二、认识 Java 版本 三、选择哪个版本比较好 搭建 Java 开发环境 一、下载 Java 软件开发工具包 JDK 二、配置环境变量 自动配置 手动配置 三、下载合适的 IDE IntelliJ IDEA Visual Studio Code Eclip…...

每天一道算法练习题--Day15 第一章 --算法专题 --- -----------二叉树的遍历
概述 二叉树作为一个基础的数据结构,遍历算法作为一个基础的算法,两者结合当然是经典的组合了。很多题目都会有 ta 的身影,有直接问二叉树的遍历的,有间接问的。比如要你找到树中满足条件的节点,就是间接考察树的遍历…...

golang - 函数的使用
核心化编程 为什么需要函数? 代码冗余问题不利于代码维护函数可以解决这个问题 函数 函数:为完成某一功能的程序指令(语句)的集合,称为函数 在 Go 中,函数分为:自定义函数(自己写…...

真题详解(极限编程)-软件设计(六十一)
真题详解(二分查找平均值)-软件设计(六十)https://blog.csdn.net/ke1ying/article/details/130417464 VLANtag属于 数据链路层实现。 数据链路层:网桥交换机。 网络层:路由器。 物理层:中继器。 Telent…...
计算机网络笔记:TCP粘包
默认情况下, TCP 连接会启⽤延迟传送算法 (Nagle 算法), 在数据发送之前缓存他们. 如果短时间有多个数据发送, 会缓冲到⼀起作⼀次发送 , 这样可以减少 IO 消耗提⾼性能。 如果是传输⽂件的话, 那么根本不⽤处理粘包的问题, 来⼀个包拼⼀个包就好了。但是如果是多条消息, 或者…...

Vue(标签属性:ref、配置项:props、混入mixin、插件、样式属性:scroped)
一、ref(打标识) 前面提及到了标签属性:keys 这里将了解ref:打标识 正常布置脚手架并创建入口文件main.js,引入组件 1. 可以给元素注册引用信息(获取真实DOM) 给一个按钮获取上方的dom的方法,方…...

数仓建设规划核心问题!
小A进入一家网约车出现服务公司,负责公司数仓建设,试用期主要一项 OKR是制定数据仓库建设规划;因此小 A 本着从问题出发为原点,先对公司数仓现状进行一轮深入了解,理清存在问题,然后在以不忘初心原则提出解…...
容器镜像的导入导出
容器镜像的导入导出 第1关:导入导出容器 任务描述 本关任务是学习导入导出容器,要求学习者参照示例完成将busyboxContainer容器的文件系统保存为一个tar包,通过该tar包导入一个busybox:v1.0镜像。 相关知识 将 "容器的文件系统&…...

Java每日一练(20230502)
目录 1. 二叉搜索树的最近公共祖先 🌟🌟 2. 随机分组问题 🌟 3. K 个一组翻转链表 🌟🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练…...

JVM学习(九):堆
一、堆(Heap)的概述 一个JVM实例只存在一个堆内存,堆也是Java内存管理的核心区域。 Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。同时,堆内存的大小是可以调节的。《Java虚拟…...

golang - switch
switch 的使用 switch 语句用于基于不同条件执行不同操作,,直每一个 case 分支都是唯一的,从上到下逐一测试到匹配为止匹配项后面也不需要再加 break switch 表达式 {case 表达式1, 表达式2, ... :语句块1case 表达式2, 表达式3, ... :语句块…...

浙大数据结构与算法一些有意思的理论基础题
堆栈 有人给出了堆栈用数组实现的另一种方式,即直接在函数参数中传递数组和top变量(而不是两者组成的结构指针),其中Push操作函数设计如下。这个Push函数正确吗?为什么? #define MaxSize 100 ElementTyp…...
【热门框架】Mybatis-Plus怎样进行映射匹配兼容?Mybatis-Plus的ID有哪些生成策略
Mybatis-Plus提供了两种映射匹配兼容的方式:驼峰转下划线和全局配置。 驼峰转下划线 默认情况下,Mybatis-Plus会将Java类中的驼峰命名方式自动映射到数据库表中的下划线命名方式。例如,Java类中的userName属性会自动映射到表中的user_name字…...
Http1.0 、1.1、2.0、3.0的区别
巨人的肩膀 3.1 HTTP 常见面试题 | 小林coding HTTP1.0与HTTP1.1 HTTP1.1在HTTP1.0上的改进: 使用长连接的方式改善了HTTP1.0中短连接造成的性能开销支持管道网络传输,不必等到上一个的响应,就可以接着发送第二个请求,减少整体响…...

Python——基于YOLOV8的车牌识别(源码+教程)
目录 一、前言 二 、完成效果 三、 项目包 四、运行项目 (教程) 一、前言 YOLOv8LPRNet车牌定位与识别https://www.bilibili.com/video/BV1vk4y1E7MZ/ 最近做了有一个车牌识别的小需求,今天完成了,在此记录和分享 首先&#x…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...