当前位置: 首页 > news >正文

( 字符串) 9. 回文数 ——【Leetcode每日一题】

❓9. 回文数

难度:简单

给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false

回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

  • 例如,121 是回文,而 123 不是。

示例 1:

输入:x = 121
输出:true

示例 2:

输入:x = -121
输出:false
解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。

示例 3:

输入:x = 10
输出:false
解释:从右向左读, 为 01 。因此它不是一个回文数。

提示:

  • − 2 31 < = x < = 2 31 − 1 -2^{31} <= x <= 2^{31} - 1 231<=x<=2311

进阶: 你能不将整数转为字符串来解决这个问题吗?

💡思路:

法一:

  • 转化为字符串

法二:进阶

  • 反转一半数字
  • 将整数分成左右两部分,右边那部分需要转置,然后判断这两部分是否相等。

🍁代码:(Java、C++)

法一:
Java

class Solution {public boolean isPalindrome(int x) {if(x < 0) return false;String s = String.valueOf(x);for(int i = 0, j = s.length() - 1; i < j; i++, j--){if(s.charAt(i) != s.charAt(j)) return false;}return true;}
}

C++

class Solution {
public:bool isPalindrome(int x) {if(x < 0) return false;string s = to_string(x);for(int i = 0, j = s.size() - 1; i < j; i++, j--){if(s[i] != s[j]) return false;}return true;}
};

法二:
Java

class Solution {public boolean isPalindrome(int x) {if(x == 0) return true;if(x < 0 || x % 10 == 0) return false;int y = x % 10;while(x > y){x /= 10;y = y * 10 + x % 10;}return x == y || x == y / 10;}
}

C++

class Solution {
public:bool isPalindrome(int x) {if(x == 0) return true;if(x < 0 || x % 10 == 0) return false;int y = x % 10;while(x > y){x /= 10;y = y * 10 + x % 10;}return x == y || x == y / 10;}
};

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( l o g n ) O(logn) O(logn),对于每次迭代,我们会将输入除以 10,因此时间复杂度为 O ( l o g n ) O(logn) O(logn)
  • 空间复杂度 O ( 1 ) O(1) O(1),我们只需要常数空间存放若干变量。

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!

注: 如有不足,欢迎指正!

相关文章:

( 字符串) 9. 回文数 ——【Leetcode每日一题】

❓9. 回文数 难度&#xff1a;简单 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样的整数。 例如…...

SpringAOP

SpringAOP 一、AOP1. AOP简介1.1 AOP简介和作用1.2 AOP中的核心概念 2. AOP入门案例【重点】2.1 AOP入门案例思路分析2.2 AOP入门案例实现【第一步】导入aop相关坐标【第二步】定义dao接口与实现类【第三步】定义通知类&#xff0c;制作通知方法【第四步】定义切入点表达式、配…...

学系统集成项目管理工程师(中项)系列15_质量管理

1. 质量&#xff08;Quality&#xff09;的定义 1.1. 反应实体满足主体明确和隐含需求的能力的特性总和 1.2. 明确需求是指在标准、规范、图样、技术要求、合同和其他文件中用户明确提出的要求与需要 1.3. 隐含需求是指用户和社会通过市场调研对实体的期望以及公认的、不必明…...

统计学习方法第四章——朴素贝叶斯法

x.1 前言 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。是通过给定training dataset学习联合概率分布的方法&#xff0c;是一种生成方法。 x.2 使用贝叶斯定理做分类 使用贝叶斯定理做分类&#xff0c;相比较于朴素贝叶斯即丢除特征条件独立假设这个条件。 …...

安装配置goaccess实现可视化并实时监控nginx的访问日志

一、业务需求 我们安装了nginx后,需要对nginx的访问情况进行监控(希望能够实时查看到访问nginx的情况),如下图所示: 二、goaccess的安装配置步骤 2.1、准备内容 需要先安装配置nginx或OpenResty - 安装 Linux环境对Nginx开源版源码下载、编译、安装、开机自启https://b…...

springboot第14集:MyBatis-CRUD讲解

注意点&#xff1a;增、删、改操作需要提交事务&#xff01; 为了规范操作&#xff0c;在SQL的配置文件中&#xff0c;我们尽量将Parameter参数和resultType都写上&#xff01; 编写Mapper接口类 import com.da.pojo.User; import java.util.List; public interface UserMapper…...

ES6新特性(1)

目录 一、字符串扩展 &#xff08;1&#xff09;字符串遍历器接口&#xff08;for...of...&#xff09; &#xff08;2&#xff09;模板字符串 二、字符串新增方法 &#xff08;1&#xff09;包含方法 &#xff08;2&#xff09;重复方法 &#xff08;3&#xff09;补全方…...

这就是二分查找?(C语言版)

大家好&#xff01;我又来了&#xff0c;哈哈~今天我要和大家分享一种神奇的算法——二分查找&#xff01;你可能会问&#xff0c;“二分查找有什么好玩的&#xff1f;”但在我看来它就像一场魔法表演&#xff0c;当你输入一个数&#xff0c;他会在一堆数中快速找到它的位置。找…...

操作系统之内存管理

连续分配 一、单一连续 直接为要运行的进程分配一个内存&#xff0c;只适合单任务&#xff0c;只能用于单对象、单任务&#xff0c;内存被分配为系统区和用户区&#xff0c;系统区在低地址&#xff0c;用户区是一个用户独享 二、等分分区 由于分配一个内存只能执行单任务&a…...

【Python | matplotlib】matplotlib.cm的理解以及举例说明

文章目录 一、模块介绍二、颜色举例 一、模块介绍 matplotlib.cm是Matplotlib中的一个模块&#xff0c;它提供了一组用于处理颜色映射&#xff08;colormap&#xff09;的函数和类。颜色映射是一种将数值映射到颜色的方法&#xff0c;常用于制作热力图、等值线图、散点图等。 …...

数据库单实例升级

一、单实例环境,全时长二个半钟多。详细图文说明到这下载 1、停止所有oracle相关进程。 Emctlstop dbconsole Isqlplusctl stop Lsnrctl stop sqlplus /nolog sql>conn /as sysdba Connectedtoanidleinstance. sql>shutdown 然后&#xff0c;冷备份下数据库cp…...

Photoshop如何使用选区之实例演示?

文章目录 0.引言1.利用快速选择工具抠图2.制作网店产品优惠券3.利用选区改变眼睛颜色4.抠取复杂的花束5.制作丁达尔光照效果6.利用选区调整图像局部颜色 0.引言 因科研等多场景需要进行绘图处理&#xff0c;笔者对PS进行了学习&#xff0c;本文通过《Photoshop2021入门教程》及…...

ThreadLocal的使用介绍和底层原理解析和开源框架的使用实例

文章目录 ThreadLocal的使用介绍和底层原理解析和开源框架的使用实例ThreadLocal简介ThreadLocal使用示例ThreadLocal原理解析Spring中ThreadLocal的应用小结ThreadLocal的使用步骤常见面试题案例解析(框架源码经典案例)案例实战 ThreadLocal的使用介绍和底层原理解析和开源框架…...

带你学c带你飞-P7取值范围

比特位 CPU能读懂的最小单元——比特位&#xff0c;bit&#xff0c;b 字节 内存机构的最小寻址单元——字节&#xff0c;Byte&#xff0c;B 1Byte8bit 进制 怎么算 注意&#xff1a;int默认是signed类型&#xff0c;signed类型第一位是符号位 符号位 存放signed类型的存…...

ramfs, rootfsinitramfs

什么是ramfs? ramfs是一个非常简单的文件系统&#xff0c;它将Linux的磁盘缓存机制(页面缓存和dentry缓存)导出为一个动态可调整大小的基于ram的文件系统。 Linux通常将所有文件缓存在内存中。从后备存储(通常是挂载文件系统的块设备)读取的数据页被保留下来&#xff0c;以防…...

十三届蓝桥杯研究生组国赛-最大公约数(线段树+二分)

十三届蓝桥杯研究生组国赛-最大公约数 1、问题描述2、解题思路2.1 解法一:暴力查询区间gcd(75%)2.2 解法二:线段树+二分法(AC)1、问题描述 问题描述 给定一个数组, 每次操作可以选择数组中任意两个相邻的元素 x , y x,y x,y...

数据结构——二叉树层序遍历

数据结构——二叉树层序遍历 107. 二叉树的层序遍历 II199. 二叉树的右视图思路&#xff1a; 637. 二叉树的层平均值 107. 二叉树的层序遍历 II 107. 二叉树的层序遍历 II 给你二叉树的根节点 root &#xff0c;返回其节点值 自底向上的层序遍历 。 &#xff08;即按从叶子节…...

【微机原理】8088/8086微处理器

目录 一、8088/8086的功能结构 1.总线接口部件&#xff08;BIU&#xff09; 2.执行部件&#xff08;EU&#xff09; 二、8088/8086的寄存器结构&#xff08;14个&#xff09; 溢出标志的概念 溢出和进位的区别 8086CPU是Intel系列的16位微处理器&#xff0c;他有16根数据…...

springboot第12集:DAO功能代码

在Spring Boot中&#xff0c;DAO是数据访问对象的缩写&#xff0c;它是一种设计模式用于提供对数据库操作的抽象层。通过使用DAO模式&#xff0c;我们可以将数据操作与业务逻辑分离&#xff0c;并提供一个单独的接口来执行所有的数据库操作。 在Spring Boot中&#xff0c;通常使…...

基于KZG多项式承诺方案的RLN

1. 引言 RLN——Rate-Limiting Nullifier为PSE团队主导的项目&#xff0c;源自&#xff1a; Barry White Hat 2019年博客 Semaphore RLN, rate limiting nullifier for spam prevention in anonymous p2p setting RLN&#xff08;Rate-Limiting Nullifier&#xff09;是一种…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...