当前位置: 首页 > news >正文

全方位揭秘!大数据从0到1的完美落地之运行流程和分片机制


 

一个完整的MapReduce程序在分布式运行时有三类实例进程:

  • MRAppMaster: 负责整个程序的过程调度及状态协调
  • MapTask: 负责Map阶段的整个数据处理流程
  • ReduceTask: 负责Reduce阶段的整个数据处理流程

当一个作业提交后(mr程序启动),大概流程如下:

  1. 一个mr程序启动的时候,会先启动一个进程Application Master,它的主类是MRAppMaster
  2. ApplicationMaster启动之后会根据本次job的描述信息,计算出inputSplit的数据,也就是MapTask的数量
  3. ApplicationMaster然后向ResourceManager来申请对应数量的Container来执行MapTask进程。
  4. MapTask进程启动之后,根据对应的inputSplit来进行数据处理,处理流程如下
    1. 利用客户指定的inputformat来获取recordReader读取数据,形成kv键值对。
    2. 将kv传递给客户定义的Mapper类的map方法,做逻辑运算,并将map方法的输出kv收集到缓存。
    3. 将缓存中的kv数据按照k分区排序后不断的溢出到磁盘文件
  5. ApplicationMaster监控mapTask进程完成之后,会根据用户指定的参数来启动相应的reduceTask进程,并告知reduceTask需要处理的数据范围
  6. ReduceTask启动之后,根据ApplicationMaster告知的待处理的数据位置,从若干的已经存到磁盘的数据中拿到数据,并在本地进行一个归并排序,然后,再按照相同的key的kv为一组,调用客户自定义的reduce方法,并收集输出结果kv,然后按照用户指定的outputFormat将结果存储到外部设备。

MapReduce分片机制

分片的概念

​ MapReduce在进行作业提交时,会预先对将要分析的原始数据进行划分处理,形成一个个等长的逻辑数据对象,称之为输入分片(inputSplit),简称“分片”。MapReduce为每一个分片构建一个单独的MapTask,并由该任务来运行用户自定义的map方法,从而处理分片中的每一条记录。

分片是一个逻辑概念,分块是一个物理概念。

HDFS上数据是按照块为单位进行存储的,我们是能够实实在在的看到每一个数据块的。而分片则不然,是一个逻辑概念,用来描述一个MapTask处理的数据是属于哪个文件的,从什么字节位置开始处理,处理多少个字节的数据等等信息。

分片的大小选择

​ 每一个MapTask处理一个分片的数据,因此分片的数量就决定了MapTask的数量。拥有多个分片,就意味着会有多个MapTask并发执行处理数据集。那么一个MapTask处理多大的数据呢?这也是由分片的大小来决定的。

​ 如果分片设置的太小,那么管理分片的时间和构建MapTask的总时间将在整个作业的时间占比较大,影响程序的执行效率。例如: 一个分片设置为1KB的大小,计算分片、构建MapTask耗时10ms的时间,处理数据耗时10ms的时间,那这样的程序的效率是非常低下的。我们更加乐意让一个任务初始化的时间在整个任务中的时间占比尽可能低。

​ 如果分片设置的太大,那么分片所描述的数据可能会在两个数据块中存储,那就有可能会造成网络IO的产生,需要将数据移动到一个节点上进行处理,效率更低。

​ 因此,最佳分片大小应该和HDFS的块大小一致。

分片源码解读

FileSplit

public class FileSplit extends InputSplit implements Writable {private Path file;				// 描述文件的路径信息private long start;				// 描述这个分片需要处理的数据起点private long length;			// 描述这个分片需要处理的数据长度private String[] hosts;			// 描述这个分片对应的数据块在哪些节点private SplitLocationInfo[] hostInfos;public FileSplit() {}public FileSplit(Path file, long start, long length, String[] hosts) {this.file = file;this.start = start;this.length = length;this.hosts = hosts;}...
}
复制代码

FileInputFormat

public abstract class FileInputFormat<K, V> extends InputFormat<K, V> {// ...// 定义了一个1.1倍的溢出值private static final double SPLIT_SLOP = 1.1D;// ...// 创建一个分片对象,设置这个分片需要处理的数据位置、起点、长度、hosts等信息protected FileSplit makeSplit(Path file, long start, long length, String[] hosts) {return new FileSplit(file, start, length, hosts);}// ...// 最重要的方法: 获取文件所有的分片信息public List<InputSplit> getSplits(JobContext job) throws IOException {StopWatch sw = (new StopWatch()).start();long minSize = Math.max(this.getFormatMinSplitSize(), getMinSplitSize(job));long maxSize = getMaxSplitSize(job);List<InputSplit> splits = new ArrayList();List<FileStatus> files = this.listStatus(job);boolean ignoreDirs = !getInputDirRecursive(job) && job.getConfiguration().getBoolean("mapreduce.input.fileinputformat.input.dir.nonrecursive.ignore.subdirs", false);Iterator var10 = files.iterator();while(true) {while(true) {while(true) {FileStatus file;do {if (!var10.hasNext()) {job.getConfiguration().setLong("mapreduce.input.fileinputformat.numinputfiles", (long)files.size());sw.stop();if (LOG.isDebugEnabled()) {LOG.debug("Total # of splits generated by getSplits: " + splits.size() + ", TimeTaken: " + sw.now(TimeUnit.MILLISECONDS));}return splits;}file = (FileStatus)var10.next();} while(ignoreDirs && file.isDirectory());// 重要逻辑在这里!!!// 获取到文件的路径描述信息Path path = file.getPath();// 获取到文件的大小long length = file.getLen();// 如果文件的大小不等于0if (length != 0L) {// 获取数据块的分布信息BlockLocation[] blkLocations;if (file instanceof LocatedFileStatus) {blkLocations = ((LocatedFileStatus)file).getBlockLocations();} else {FileSystem fs = path.getFileSystem(job.getConfiguration());blkLocations = fs.getFileBlockLocations(file, 0L, length);}// 如果文件可以分片(有些文件是不可以分片的)if (this.isSplitable(job, path)) {// 获取一个Block的大小long blockSize = file.getBlockSize();// 计算分片的大小(块大小, 配置文件中设置的最小分片大小,最大分片大小的中间值)long splitSize = this.computeSplitSize(blockSize, minSize, maxSize);// 用来记录来剩多少字节的数据没有分片long bytesRemaining;int blkIndex;// 循环分片开始了!// 注意: 循环的条件,并不是剩余数量不足分片大小! 有一个1.1倍的溢出的值的!for(bytesRemaining = length; (double)bytesRemaining / (double)splitSize > 1.1D; bytesRemaining -= splitSize) {blkIndex = this.getBlockIndex(blkLocations, length - bytesRemaining);// 创建一个分片!添加到分片集合中!splits.add(this.makeSplit(path, length - bytesRemaining, splitSize, blkLocations[blkIndex].getHosts(), blkLocations[blkIndex].getCachedHosts()));}// 循环走完后,创建一个分片来描述剩余的数据if (bytesRemaining != 0L) {blkIndex = this.getBlockIndex(blkLocations, length - bytesRemaining);splits.add(this.makeSplit(path, length - bytesRemaining, bytesRemaining, blkLocations[blkIndex].getHosts(), blkLocations[blkIndex].getCachedHosts()));}} else {if (LOG.isDebugEnabled() && length > Math.min(file.getBlockSize(), minSize)) {LOG.debug("File is not splittable so no parallelization is possible: " + file.getPath());}splits.add(this.makeSplit(path, 0L, length, blkLocations[0].getHosts(), blkLocations[0].getCachedHosts()));}} else {splits.add(this.makeSplit(path, 0L, length, new String[0]));}}}}}// 计算分片大小protected long computeSplitSize(long blockSize, long minSize, long maxSize) {return Math.max(minSize, Math.min(maxSize, blockSize));}
}
复制代码

分片总结

  1. 分片大小参数

    ​ 通过分析源码,在FileInputFormat中,计算分片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 分片主要由这几个值来运算决定

    参数默认值属性
    minSize1mapreduce.input.fileinputformat.split.minsize
    maxSizeLong.MAX_VALUEmapreduce.input.fileinputformat.split.maxsize
    blockSize128Mdfs.blocksize

    通过计算的逻辑分析可以得出,分片大小的计算,是取这三个值的中间值的,因此:

    • 如果需要增大分片的大小: 调整minSize大于blockSize即可
    • 如果需要减小分片的大小: 调整maxSize小于blockSize即可
  2. 分片创建过程总结

    1. 获取文件大小及位置
    2. 判断文件是否可以分片(压缩格式有的可以进行分片,有的不可以)
    3. 获取分片的大小
    4. 剩余文件的大小/分片大小>1.1时,循环执行封装分片信息的方法,具体如下:封装一个分片信息(包含文件的路径,分片的起始偏移量,要处理的大小,分片包含的块的信息,分片中包含的块存在哪儿些机器上)
    5. 剩余文件的大小/分片大小<=1.1且不等于0时,封装一个分片信息(包含文件的路径,分片的起始偏移量,要处理的大小,分片包含的块的信息,分片中包含的块存在哪儿些机器上)
    复制代码

    注意事项: 1.1倍的冗余

    一个260M的文件,分几块?分几片?

    • 分块是物理概念: 128M + 128M + 4M,因此一共有3个分块。
    • 分片是逻辑概念:
      • 第一个分片: 260M/128M > 1.1,因此第一个分片大小128M,剩余132M数据未分片。
      • 第二个分片: 132M/128M < 1.1,因此第二个分片大小132M
      • 因此这个文件有2个分片。
  3. 多分片文件读取

    ​ 数据文件被分了多个分片,那么我们不能保证分片是正好按照行分开的,极大的可能性是一行的数据被分到了两个分片中。因此,我们在进行多个分片的数据读取的时候:

    - 第一个分片读到末尾再多读一行
    - 既不是第一个分片也不是最后一个分片第一行数据舍弃,末尾多读一行
    - 最后一个分片舍弃第一行,末尾多读一行
    复制代码

运行流程之MapTask

1. maptask调用FileInputFormat的getRecordReader读取分片数据
2. 每行数据读取一次,返回一个(K,V)对,K是offset,V是一行数据
3. 将k-v对交给MapTask处理
4. 每对k-v调用一次map(K,V,context)方法,然后context.write(k,v)
5. 写出的数据交给收集器OutputCollector.collector()处理
6. 将数据写入环形缓冲区,并记录写入的起始偏移量,终止偏移量,环形缓冲区默认大小100M
7. 默认写到80%的时候要溢写到磁盘,溢写磁盘的过程中数据继续写入剩余20%
8. 溢写磁盘之前要先进行分区然后分区内进行排序
9. 默认的分区规则是hashpatitioner,即key的hash%reduceNum
10. 默认的排序规则是key的字典顺序,使用的是快速排序
11. 溢写会形成多个文件,在maptask读取完一个分片数据后,先将环形缓冲区数据刷写到磁盘
12. 将数据多个溢写文件进行合并,分区内排序(外部排序 => 归并排序)
复制代码

​ MapTask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度.那么,MapTask并行实例是否越多越好呢?其并行度又是如何决定呢?

1. 如果硬件配置为2*12core + 64G,恰当的map并行度是大约每个节点20-100个map,最好每个map的执行时间至少一分钟。2. 如果job的每个map或者 reduce task的运行时间都只有30-40秒钟,那么就减少该job的map或者reduce数,每一个task(map|reduce)的setup和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。3. 配置task的JVM重用可以改善该问题:(mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task数目(属于同一个Job)是1。也就是说一个task启一个JVM)4. 如果input的文件非常的大,比如1TB,可以考虑将hdfs上的每个block size设大,比如设成256MB或者512MB
复制代码

运行流程之ReduceTask

1. 数据按照分区规则发送到reducetask
2. reducetask将来自多个maptask的数据进行合并,排序(外部排序===》归并排序)
3. 按照key相同分组()
4. 一组数据调用一次reduce(k,iterable<v>values,context)
5. 处理后的数据交由reducetask
6. reducetask调用FileOutputFormat组件
7. FileOutputFormat组件中的write方法将数据写出
复制代码

Reduce Task的并行度同样影响整个job的执行并发度和执行效率,但与Map Task的并发数由切片数决定不同,Reduc Task数量的决定是可以直接手动设置:默认值是1,手动设置为4

设置方法:job.setNumReduceTasks(4);
复制代码

如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜

注意: Reduce Task数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个Reduce Task。尽量不要运行太多的Reduce Task。对大多数job来说,最好reduce的个数最多和集群中的reduce持平,或者比集群的 reduce slots小。这个对于小集群而言,尤其重要。

 

相关文章:

全方位揭秘!大数据从0到1的完美落地之运行流程和分片机制

一个完整的MapReduce程序在分布式运行时有三类实例进程&#xff1a; MRAppMaster: 负责整个程序的过程调度及状态协调MapTask: 负责Map阶段的整个数据处理流程ReduceTask: 负责Reduce阶段的整个数据处理流程 当一个作业提交后(mr程序启动)&#xff0c;大概流程如下&#xff1…...

后端程序员的前端必备【Vue】 - 07 ES6新语法

ES6新语法 1 let定义变量2 const定义常量3 模板字符串4 方法默认值5 箭头函数6 解构6.1 对象解构6.2 数组解构6.2 使用解构实现变量交换 7 Spread Operator8 模块化编程 1 let定义变量 使用let定义变量能更加精准的确定变量的作用域 //for(var i 0 ; i < 10 ; i){} for(let…...

AI落地:程序员如何用AI?

对于程序员来说&#xff0c;真正能提高效率、可落地的AI应用场景都有哪些&#xff1f; 目前已经能切实落地&#xff0c;融入我日常工作生活的有以下几个场景&#xff1a; 开发工作&#xff1a;自然语言生成代码&#xff0c;自动补全代码 日常工作学习&#xff1a;写作、翻译、…...

掌握优化+创新模式,轻松提升APP广告eCPM

​无论是市场占有率高的综合性应用程序(App)&#xff0c;还是透过特定目的所设计的专业化应用程序(App)&#xff0c;内部嵌入广告已成为其主要的盈利方式。 而优化和创新作为提升广告收益的两大关键词。通过不断的数据分析和优化&#xff0c;结合对用户需求的深刻理解去优化和…...

在docker上安装运行Python文件

目录 一、在docker中安装python 1.1 输入镜像拉取命令 1.2 查看镜像 1.3 运行 1.4 查看是否成功 1.5 查看python版本 二、运行py文件 2.1准备运行所需文件 2.2 准备文件夹 2.3 大概是这幅模样 2.4 打包上传到服务器上 2.5 构建镜像示例 2.6 查看镜像 2.7 优化镜像的…...

RocketMQ第三节(生产者和消费者)

目录 1&#xff1a;生产者&#xff08;同步、异步、单向&#xff09; 1.1&#xff1a;同步发送消息&#xff08;每发送一条等待mq返回值&#xff09; 1.2&#xff1a;异步发送消息 1.3&#xff1a;单向发送消息&#xff08;不管成功失败&#xff0c;只管发送消息&#xff09…...

人大金仓亮相国际金融展,打造“金融+产业+生态”创新模式

4月27日&#xff0c;以“荟萃金融科技成果&#xff0c;展现数字金融力量&#xff0c;谱写金融服务中国式现代化新篇章”为主题的2023中国国际金融展圆满落幕。作为已经举办30年的行业盛会&#xff0c;人大金仓再一次重磅亮相&#xff0c;全方位展示国产数据库前沿应用和创新服务…...

Syslog-ng RHEL 的安装和配置

syslog-ng 作为 syslog 的替代工具&#xff0c;可以完全替代 syslog 的服务&#xff0c;并且通过定义规则&#xff0c;实现更好的过滤功能。 作为运维来说一个好的日志工具比什么都重要。 通常我们会管理不同的服务器&#xff0c;因此我们需要把日志集中一下以便于快速查找。…...

得物直播低延迟探索 | 得物技术

1.背景 直播的时效性保证了良好的用户体验&#xff0c;根据经验在交易环节&#xff0c;延迟越低转化效果也会越好。传统的直播延迟问题已经成为了一个不容忽视的问题&#xff0c;高延迟不仅破坏了用户的观看体验&#xff0c;也让主播难以实时获取到用户的反馈。为了进一步优化…...

【CVPR红外小目标检测】红外小目标检测中的非对称上下文调制(ACM)

论文题目&#xff1a; Asymmetric Contextual Modulation for Infrared Small Target Detection 红外小目标检测中的非对称上下文调制 红外小目标数据集 目标个数分布&#xff1a;约90%图片中只有一个目标&#xff0c;约10%图片有多个目标&#xff08;在稀疏/显著的方法中&am…...

Axios概述

一、Json-server 获得零编码的完整伪造 REST API zero coding 在不到 30 秒的时间内 &#xff08;认真&#xff09;。 使用 <3 创建&#xff0c;适用于需要快速后端进行原型设计和模拟的前端开发人员&#xff0c;模拟后端发送过来json数据。 1.安装 npm install -g jso…...

用右雅克比对旋转矩阵进行求导

考虑一个向量 a \bold{a} a对其进行旋转, 旋转用旋转矩阵 R \bold{R} R表示, 用朴素的倒数定义进行求导而不是用扰动模型, 我得到了这个过程与结果 和高博的新书结果 − R J r a ∧ -\bold{R}\bold{J}_{r}\bold{a}^{\wedge} −RJr​a∧结果不一样, 雅克比矩阵位置不同, 是不是…...

高性能HMI 走向扁平化

个人计算机作为图形用户界面&#xff08;GUI&#xff09;在自动化中已经使用了30多年。在那段时间里&#xff0c;从技术、术语、功能到用于创建接口的标准和指南&#xff0c;发生了许多变化。 PC 技术的飞速发展&#xff0c;特别是图形显示&#xff0c;用户界面的技术发展导致了…...

虚幻引擎配置物体水面浮力的简便方法

虚幻引擎配置物体水面浮力的简便方法 目录 虚幻引擎配置物体水面浮力的简便方法前言前期工作配置水面浮力针对一个立方体的水面浮力配置针对船3D模型的水面浮力配置 小结 前言 在使用虚幻引擎配置导入的3D模型时&#xff0c;如何快速地将水面浮力配置正确&#xff0c;从而使得…...

WatchGuard 防火墙策略、配置和日志分析器

获取 Internet 活动见解并及时了解安全事件是一项具有挑战性的任务&#xff0c;因为安全设备会生成大量的安全和流量日志。Firewall Analyzer 针对 WatchGuard 防火墙设备的报告功能具有一系列功能&#xff0c;使您能够增强网络安全。WatchGuard 日志分析器软件&#xff0c;可让…...

Web自动化测试——XAPTH高级定位

XAPTH高级定位 一、xpath 基本概念二、xpath 使用场景三、xpath 相对定位的优点四、xpath 定位的调试方法五、xpath 基础语法&#xff08;包含关系&#xff09;六、xpath 顺序关系&#xff08;索引&#xff09;七、xpath 高级用法1、[last()]: 选取最后一个2、[属性名属性值 an…...

CentOS 7 安装 Nginx

前言 最近&#xff0c;在公司经常会进行项目的部署&#xff0c;但是服务器环境都是导师已经搭建好了的&#xff0c;我就是将项目文件放到特定目录。于是&#xff0c;周末在家就进行了 Nginx 的安装学习。之前&#xff0c;在 Windows 上使用过 Nginx&#xff0c;但是在 Linux 环…...

Databend 开源周报第 91 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 新数据类型&…...

【Ubuntu18.04使用yolov5教程】

欢迎大家阅读2345VOR的博客【Ubuntu18.04使用yolov5教程】&#x1f973;&#x1f973;&#x1f973;2345VOR鹏鹏主页&#xff1a; 已获得CSDN《嵌入式领域优质创作者》称号&#x1f47b;&#x1f47b;&#x1f47b;&#xff0c;座右铭&#xff1a;脚踏实地&#xff0c;仰望星空…...

CocoaPods如何发布新版本的Pod Library

当我们修改了一个Pod Library中的代码时&#xff0c;如何让依赖该库的项目能更新到最新代码&#xff0c;步骤如下&#xff1a; 假设现在修改了SamplePod&#xff08;Pod名称&#xff09;的代码&#xff0c;希望将最新版本更新到1.0.1&#xff0c;目前版本是1.0.0 修改SamplePo…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...