【深度学习 | Transformer】Transformers 教程:pipeline一键预测
文章目录
- 一、前言
- 二、Computer vision
- 2.1 Image classification
- 2.2 Object detection
- 2.3 Image segmentation
- 2.4 Depth estimation
- 三、NLP
- 3.1 Text classification
- 3.2 Token classification
- 3.3 Question answering
- 3.4 Summarization
- 3.5 Translation
- 3.6 Language modeling
- 3.6.1 预测序列中的下一个单词
- 3.6.2 预测一个序列中的一个被屏蔽的token
一、前言
Transformers 是用于自然语言处理 (NLP)、计算机视觉以及音频和语音处理任务的预训练最先进模型库。该库不仅包含 Transformer 模型,还包含非 Transformer 模型,例如用于计算机视觉任务的现代卷积网络。
pipeline()
可以加载多个模型让进行推理变得简单,即使没有使用特定模态的经验或不熟悉模型背后的底层代码,仍然可以使用它们通过pipeline()
进行推理。
二、Computer vision
2.1 Image classification
从一组预定义的类中标记图像。
from transformers import pipeline
classifier = pipeline(task="image-classification")
preds = classifier("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
)preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
输出结果为:
{'score': 0.4335, 'label': 'lynx, catamount'}
{'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}
{'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}
{'score': 0.0239, 'label': 'Egyptian cat'}
{'score': 0.0229, 'label': 'tiger cat'}
2.2 Object detection
目标检测识别图像对象以及对象在图像中的位置。
from transformers import pipeline
detector = pipeline(task="object-detection")
preds = detector("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
)preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds]
输出结果为:
[{'score': 0.9865,'label': 'cat','box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}]
2.3 Image segmentation
图像分割是一项像素级任务,它将图像中的每个像素分配给一个类别。
from transformers import pipeline
segmenter = pipeline(task="image-segmentation")
preds = segmenter("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
)preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
输出结果为:
{'score': 0.9879, 'label': 'LABEL_184'}
{'score': 0.9973, 'label': 'snow'}
{'score': 0.9972, 'label': 'cat'}
2.4 Depth estimation
预测图像中每个像素与相机的距离。
from transformers import pipeline
depth_estimator = pipeline(task="depth-estimation")
preds = depth_estimator("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
)
三、NLP
3.1 Text classification
从一组预定义的类中标记一系列文本。
from transformers import pipeline
classifier = pipeline(task="sentiment-analysis")
preds = classifier("Hugging Face is the best thing since sliced bread!")
3.2 Token classification
为每个token分配定义类别中的标签。
from transformers import pipeline
classifier = pipeline(task="ner")
preds = classifier("Hugging Face is a French company based in New York City.")
3.3 Question answering
返回问题的答案,有时有上下文(开放域),有时没有上下文(封闭域)。
from transformers import pipeline
question_answerer = pipeline(task="question-answering")
preds = question_answerer(question="What is the name of the repository?",context="The name of the repository is huggingface/transformers",
)
3.4 Summarization
从较长的文本创建较短的版本,同时试图保留原始文档的大部分含义。
from transformers import pipeline
summarizer = pipeline(task="summarization")
summarizer("In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles."
)
3.5 Translation
将一种语言的转换为另一种语言。
from transformers import pipeline
text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning."
translator = pipeline(task="translation", model="t5-small")
3.6 Language modeling
3.6.1 预测序列中的下一个单词
from transformers import pipeline
prompt = "Hugging Face is a community-based open-source platform for machine learning."
generator = pipeline(task="text-generation")
3.6.2 预测一个序列中的一个被屏蔽的token
text = "Hugging Face is a community-based open-source <mask> for machine learning."
fill_mask = pipeline(task="fill-mask")
相关文章:
【深度学习 | Transformer】Transformers 教程:pipeline一键预测
文章目录 一、前言二、Computer vision2.1 Image classification2.2 Object detection2.3 Image segmentation2.4 Depth estimation 三、NLP3.1 Text classification3.2 Token classification3.3 Question answering3.4 Summarization3.5 Translation3.6 Language modeling3.6.…...

HTMLCSS
1、HTML 1.1 介绍 HTML 是一门语言,所有的网页都是用HTML 这门语言编写出来的,也就是HTML是用来写网页的,像京东,12306等网站有很多网页。 这些都是网页展示出来的效果。而HTML也有专业的解释 HTML(HyperText Markup Language)…...

【安装Nginx】
Linux上安装Nginx 文章目录 Linux上安装NginxUbuntuCentOS查看已安装的软件 Ubuntu 在 Ubuntu 上安装 Nginx 非常简单。只需按照以下步骤操作: 打开终端,更新软件包索引: sudo apt update安装 Nginx: sudo apt install nginx安…...

VSCode作业1:猜数字游戏和简单计数器(包含完整代码)
目录 猜数字游戏 一、使用‘random’函数获取随机数 二、 分情况讨论输入值大小情况 三、HTML代码 四、CSS样式及运行效果 简单计数器(计时器) 一、使用‘setInterval’函数实现计数效果 二、使用’clearInterval‘函数实现暂停计数和重新计数效果 …...

NANK OE骨传导开放式蓝牙耳机发布,极致体验拉满!
近日,中国专业音频品牌NANK南卡发布了全新一代——骨传导开放式蓝牙耳机NANK OE,耳机采用了传统真无线和骨传导的结合方式,带来更加舒适的佩戴体验和音质升级,同时还支持单双耳自由切换,全新的设计收获了市场的喜爱和认…...

看完这篇文章你就彻底懂啦{保姆级讲解}-----(I.MX6U驱动GPIO中断《包括时钟讲解》) 2023.5.9
目录 前言整体文件结构源码分析(保姆级讲解)中断初始化部分初始化GIC控制器初始化中断向量表设置中断向量表偏移 系统时钟初始化部分使能所有的时钟部分led初始化部分beep初始化部分key初始化部分按键中断初始化部分按键中断服务函数部分 while循环部分 …...

MySql -- 事务
目录 1.概念 2.事务的运用场景 3.事务的四大特点 4.执行事务带来的问题 4.1 脏读 4.2 不可重复度 4.3 幻读 5. MySQL中事务的隔离级别 1.概念 事务就是把若干个独立操作打包成一个整体而诞生的一种功能. 2.事务的运用场景 比如:A——>B 转账500 A的余额-500…...

关于大模型对未来影响的一点看法
人们总是高估了未来一到两年的变化,低估了未来十年的变革。 ---比尔盖茨 近来OpenAI的GPT技术可以说在全球都带来了巨大的影响,也让大家看到了什么叫大力出奇迹。chatGPT和GPT4的能力给了大家很大的震撼,其流畅自如、逻辑清晰、出众的能力&am…...
Android - 约束布局 ConstraintLayout
一、概念 解决布局嵌套过多的问题,采用方向约束的方式对控件进行定位。 二、位置约束 2.1 位置 至少要保证水平和垂直方向都至少有一个约束才能确定控件的位置。 layout_constraintLeft_toLeftOf我的左边,与XXX左边对齐。layout_constraintLeft_toRight…...

Addictive Multiplicative in NN
特征交叉是特征工程中的重要环节,在以表格型(或结构化)数据为输入的建模中起到了很关键的作用。 特征交互的作用,一是尽可能挖掘对目标有效的模式、特征,二是具有较好的可解释性,三是能够将对数据的洞见引…...

LeetCode 1206. 实现跳表
不使用任何库函数,设计一个跳表。 跳表是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。 例如,一个跳表包…...

离散数学_九章:关系(2)
9.2 n元关系及其应用 1、n元关系,关系的域,关系的阶2、数据库和关系 1. 数据库 2. 主键 3. 复合主键 3、n元关系的运算 1. 选择运算 (Select) 2. 投影运算 (Project) 3. 连接运算 (Join) n元关系:两个以上集合的元素间的关系 1、n元关系…...
[ubuntu][原创]通过apt方式去安装libnccl库
ubuntu18.04版本安装流程: wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://develo…...

YonLinker连接集成平台构建新一代产业互联根基
近日,由用友公司主办的“2023用友BIP技术大会“在用友产业园(北京)盛大召开,用友介绍了更懂企业业务的用友BIP-iuap平台,并发布了全面数智化能力体系,助力企业升级数智化底座,加强加速数智化推进…...
泛型的详解
泛型的理解和好处 首先我们先来看看泛型的好处 1)编译时,检查添加元素的类型,提高了安全性 2)减少了类型转换的次数,提高效率[说明] 不使用泛型 Dog -> Object -> Dog//放入到ArrayList 会先转成Object,在取出时&#x…...

用科技创造未来!流辰信息技术助您实现高效办公
随着社会的迅猛发展,科技的力量无处不见。它正在悄悄地改变整个社会,让人类变得进步和文明,让生活变得便捷和高效。在办公自动化强劲发展的今天,流辰信息技术让通信业、电网、汽车、物流等领域的企业实现了高效办公,数…...
基于R语言APSIM模型
随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。 APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物…...

块状链表实现BigString大字符串操作(golang)
前言 块状链表是介于链表和数组之间的数据结构,能够在 O ( n ) O(\sqrt{n}) O(n )时间内完成插入、删除、访问操作。 数据结构如图所示。假设最大容量为 n n n, 则它有一个长度为 s n s\sqrt{n} sn 的链表。链表中每个结点是一个长度为 2 n 2 \times \sqrt{…...
项目问题记录(持续更新)
1.在 yarn install的时候报 error achrinza/node-ipc9.2.2: The engine "node" is incompatible with this module. Expected version "8 || 10 || 12 || 14 || 16 || 17". Got "20.1.0" error Found incompatible module.需要执行 yarn config…...

Linux的进程
目录 一、进程占用的内存资源 二、进程的系统环境 三、进程一直在切换 四、父进程和子进程 五、进程状态 六、查看进程 1.ps -ef 列出所有进程 2.ps -lax 列出所有进程 3.ps aux列出所有进程 4.树形列出所有进程 七、作业(用来查看管理进程) …...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Spring AOP代理对象生成原理
代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...