当前位置: 首页 > news >正文

强化学习p3-策略学习

Policy Network (策略网络)

我们无法知道策略函数 π \pi π所以要做函数近似,求一个近似的策略函数
使用策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ) 去近似策略函数 π ( a ∣ s ) \pi(a|s) π(as)

在这里插入图片描述
∑ a ∈ A π ( a ∣ s ; θ ) = 1 \sum_{a\in A} \pi(a|s;\theta) = 1 aAπ(as;θ)=1
动作空间A的大小是多少,输出向量的维度就是多少。

策略学习的目标函数

状态价值函数(State-value function)
V π ( s t ) = E A [ Q π ( s t , A ) ] = ∑ a π ( a ∣ s t ) ⋅ Q π ( s t , a ) V_\pi(s_t)=E_A[Q_\pi(s_t,A)] = \sum_a\pi(a|s_t)\cdot Q_\pi(s_t,a) Vπ(st)=EA[Qπ(st,A)]=aπ(ast)Qπ(st,a)
对A求期望,去掉A的影响
用策略网络 π ( a ∣ s t ; θ ) \pi(a|s_t;\theta) π(ast;θ) 去近似策略函数 π ( a ∣ s t ) \pi(a|s_t) π(ast)
V π ( s t ; θ ) = E A [ Q π ( s t , A ) ] = ∑ a π ( a ∣ s t ; θ ) ⋅ Q π ( s t , a ) V_\pi(s_t;\theta)=E_A[Q_\pi(s_t,A)] = \sum_a\pi(a|s_t;\theta)\cdot Q_\pi(s_t,a) Vπ(st;θ)=EA[Qπ(st,A)]=aπ(ast;θ)Qπ(st,a)
近似状态价值既依赖于当前状态 s t s_t st,也依赖于策略网络 π \pi π的参数 θ \theta θ
如果一个策略很好,那么状态价值函数的近似 V π ( s ; θ ) V_\pi(s;\theta) Vπ(s;θ)的均值应当很大。因此我们定义目标函数:
J ( θ ) = E S [ V π ( s ; θ ) ] J(\theta)=E_S[V_\pi(s;\theta)] J(θ)=ES[Vπ(s;θ)]
目标函数 J ( θ ) J(\theta) J(θ) 排除了状态 S S S的因素,只依赖于策略网络 π \pi π的参数 θ \theta θ。策略越好,则 J ( θ ) J(\theta) J(θ) 越大,所以策略学习可以被看作是这样一个优化问题:
m a x θ J ( θ ) \mathop{max}_{\theta}J(\theta) maxθJ(θ)
通过学习参数 θ \theta θ ,使得目标函数 J ( θ ) J(\theta) J(θ)
越来越大,也就意味着策略网络越来越好。

使用策略梯度上升更新 θ \theta θ ,使得 J ( θ ) J(\theta) J(θ)增大。
设当前策略网络的参数为 θ \theta θ,做梯度上升更新参数,得到新的参数 θ ′ \theta' θ, β \beta β为学习率
θ ′ = θ + β ⋅ ∂ V ( s ; θ ) ∂ θ \theta' =\theta+\beta \cdot \frac{\mathrm{\partial}V(s;\theta)}{\mathrm{\partial}\theta} θ=θ+βθV(s;θ)

策略梯度(Policy Gradient)

∂ V ( s ; θ ) ∂ θ \frac{\mathrm{\partial}V(s;\theta)}{\mathrm{\partial}\theta} θV(s;θ)大概推导 不严谨 实际上 Q π Q_\pi Qπ中也有 θ \theta θ要求导
在这里插入图片描述

使用策略梯度更新策略网络

算法
1、在 t t t时刻观测到状态 s t s_t st
2、根据策略网络 π ( . ∣ s t ; θ ) \pi(.|s_t;\theta) π(.∣st;θ)随机抽样一个动作 a t a_t at
3、计算动作价值 q t ≈ Q π ( s t , a t ) q_t \approx Q_\pi(s_t,a_t) qtQπ(st,at)
4、计算策略网络关于参数 θ \theta θ的微分 d θ = ∂ l n π ( a ∣ s ; θ ) ∂ θ ∣ θ = θ t d\theta = \frac{\mathrm{\partial}ln\pi(a|s;\theta)}{\mathrm{\partial}\theta}|_{\theta=\theta_t} dθ=θl(as;θ)θ=θt
5、计算近似策略梯度 g ( a t , θ t ) = q t , d θ g(a_t,\theta_t)=q_t,d\theta g(at,θt)=qt,dθ
6、更新策略网络: θ t + 1 = θ t + β ⋅ g ( a t , θ t ) \theta_{t+1}=\theta_t+\beta \cdot g(a_t,\theta_t) θt+1=θt+βg(at,θt)

在第 3 步中,怎么计算 q t q_t qt
在后面章节中,我们用两种方法对 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a) 做近似。
1、REINFORCE 算法
用实际观测的回报 u u u近似 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)
2、actor-critic 算法
用神经网络 q ( s , a ; w ) q(s,a;w) q(s,a;w)近似 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a)

所以想要近似求得 π \pi π函数 还要近似求得 Q π Q_\pi Qπ函数

相关文章:

强化学习p3-策略学习

Policy Network (策略网络) 我们无法知道策略函数 π \pi π所以要做函数近似,求一个近似的策略函数 使用策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(a∣s;θ) 去近似策略函数 π ( a ∣ s ) \pi(a|s) π(a∣s) ∑ a ∈ A π ( a ∣ s ; θ ) 1 \sum_{a\in …...

初学Verilog语言基础笔记整理(实例点灯代码分析)持续更新~

实例:点灯学习 一、Verilog语法学习 1. 参考文章 刚接触Verilog,作为一个硬件小白,只能尝试着去理解,文章未完…持续更新。 参考博客文章: Verilog语言入门学习(1)Verilog语法【Verilog】一文…...

关于 std::condition_variable

一. std::condition_variable是什么? std::condition_variable 是 C 标准库提供的一个线程同步的工具,用于实现线程间的条件变量等待和通知机制。 条件变量的发生通常与某个共享变量的状态改变相关。 在多线程编程中,条件变量通常和互斥锁…...

可拓展哈希

可拓展哈希 借CMU 15445的ppt截图来说明问题。 我们传统静态hash的过程是hash函数后直接将值存入对应的bucket,但是在可扩展hash中,得查询Directory(左),存入directory指向的bucket(右)。 下面…...

Java 版 spring cloud 工程系统管理 +二次开发 工程项目管理系统源码

工程项目各模块及其功能点清单 一、系统管理 1、数据字典:实现对数据字典标签的增删改查操作 2、编码管理:实现对系统编码的增删改查操作 3、用户管理:管理和查看用户角色 4、菜单管理:实现对系统菜单的增删改查操…...

通过伴随矩阵怎么求逆矩阵

设矩阵A为n阶方阵,其伴随矩阵为Adj(A),则A的逆矩阵为: A⁻ (1/|A|) Adj(A) |A|为A的行列式 Adj(A)为A的伴随矩阵 具体步骤如下: 求出A的行列式|A| 求出A的伴随矩阵 Adj(A) 。伴随矩阵的定义为:对于A的第i行第j列…...

巡检机器人之仪表识别系统

作者主页:爱笑的男孩。 博客简介:分享机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。 如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666foxmail.c…...

面试官反感的求职者(下)

上期给大家总结了面试中常见的一些问题,今天就接着上次的话题再给大家说说HR反感的求职者,希望同学们可以自省,避免踩雷。小编从如信银行考试中心了解到的有: 第一、缺乏个性者 这种考生在答题中往往表现得千篇一律,从…...

可视化绘图技巧100篇分析篇(二)-生存曲线(LM曲线)(补充篇)

目录 前言 知识储备 生存分析中的基本概念 生存分析 (survival analysis) 事件 (event)...

【100%通过率 】【华为OD机试python】钟表重合时刻【 2023 Q1考试题 A卷|100分】

华为OD机试- 题目列表 2023Q1 点这里!! 2023华为OD机试-刷题指南 点这里!! ■ 题目描述 钟表是日常生活中不可缺少的时间度量计, 其时针、分针、秒针三者的转动速度满足特定规律(见备注)。 现在输入时刻 time ,请计算出时刻 time 小时和 time+1 小时之间, 时针和分针…...

Java线程池编码示例

第1步:自定义线程实现类 Java中多线程编码时,定义线程类有两种方式: 继承Thread类实现Runnable接口(由于Java的单继承特性,一般推荐使用此方式) public class BizThread implements Runnable {private int …...

如何优化Android 4.x系统设置字体大小

android4.x系统设置字体大小导致应用布局混乱的解决方案 在前几年,Android系统的设置界面还是相对简单的,用户可以通过设置菜单进行各种系统设置,如字体大小、壁纸、铃声等。但是随着用户对系统功能的需求越来越多,Android系统也在…...

Docker安装、Docker基本操作

一、Dokcer安装 1.安装 # 1、yum 包更新到最新,需要几分钟时间(注意:也可以直接跨过) sudo yum update # 2、作用:安装需要的软件包, yum-util 提供yum-config-manager功能,另外两个是devicemapper驱动依赖的 sudo yum install -y yum-util…...

系统集成项目管理工程师知识点总结

项目经理的五种权利: 职位权力: 来源于管理者在组织中的职位和职权。罚权力: 使用降职、扣薪、惩罚、批评、威胁等负面手段的能力。奖励权力: 给予下属奖励的能力专家权力: 来源于个人的专业技能。参照(号…...

【游戏里的网络同步分析】马里奥制造2 多人模式

前置知识 先说几个游戏设计的术语。 PlayerAgent是玩家控制的网络游戏中的角色形象,也是代表在游戏空间中的玩家,被唯一PlayerController所拥有,被所有用户可观测到。 在马里奥制造2中,PlayerAgent一共有四种:马里奥 …...

SSM框架学习-注解开发第三方bean管理

1. 复习xml配置文件管理第三方bean 在Spring中,可以使用依赖注入(Dependency Injection)来管理和使用第三方Bean。Spring提供了多种方式来进行依赖注入,比如构造函数注入、Setter方法注入、字段注入等。下面以Setter方法注入为例&…...

【数据结构与算法】图——邻接表与邻接矩阵

文章目录 一、图的基本概念二、图的存储结构2.1 邻接矩阵2.2 邻接表2.3 邻接矩阵的实现2.4 邻接表的实现 三、总结 一、图的基本概念 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E&#…...

网安笔记02 密码学基础

密码学概述 • 1.1、密码学的基本概念 密码编码学 : 密码编制 密码分析学 : 密码破译 密码学 : 研究密码保护 通信手段的科学, 密码编码学密码分析学 密码技术: 把可理解的消息伪装为不可理解的消息,再复原成原消息的科学 概…...

open3d io操作

目录 1. read_image, write_image 2. read_point_cloud, write_point_cloud 3. 深度相机IO操作 4. Mesh文件读取 1. read_image, write_image 读取jpg. png. bmp等文件 image_io.py import open3d as o3dif __name__ "__main__":img_data o3d.data.JuneauIma…...

【Linux】Linux安装Redis(图文解说详细版)

文章目录 前言第一步,下载安装包第二步,上传安装包到/opt下(老规矩了,安装包在opt下)第三步,解压安装包第四步,编译第五步,安装第六步,配置redis第七步,设置开…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...