【数据结构与算法】图——邻接表与邻接矩阵
文章目录
- 一、图的基本概念
- 二、图的存储结构
- 2.1 邻接矩阵
- 2.2 邻接表
- 2.3 邻接矩阵的实现
- 2.4 邻接表的实现
- 三、总结
一、图的基本概念
- 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是顶点的集合,E是边的集合。
- 在图中数据元素,我们则称之为顶点(Vertex)。
- 图中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。
有上面的定义可以得出树是一个特殊的图,与图的区别是没有环连通。
树关注的是节点(顶点)的值,而图关注的是顶点及边的权值。
- 图按照有无方向分为无向图和有向图。无向图由顶点和边构成,有向图由顶点和弧构成。弧有弧尾和弧头之分。
比方说现在想表示社交关系,那么QQ,微信等就是无向图,抖音微博这种就是有向图(你关注的人不一定关注了你)。
- 图按照边或弧的多少分稀疏图和稠密图。如果任意两个顶点之间都存在边叫完全图,有向的叫有向完全图。若无重复的边或顶点到自身的边则叫简单图。
- 图中顶点之间有邻接点、依附的概念。无向图顶点的边数叫做度,有向图顶点分为入度和出度。
- 图上的边或弧上带权则称为网。
- 一个图包含了另一个图的部分顶点和部分边,就叫做子图。
- 图中顶点间存在路径,两顶点存在路径则说明是连通的,如果路径最终回到起始点则称为环(回路),当中不重复叫简单路径。若无向图任意两顶点都是连通的,则图就是连通图,有向则称强连通图。
- 生成树: 在无向图中,一个连通图的最小连通子图称作该图的生成树。有 n 个顶点的连通图的生成树有 n 个顶点和 n-1 条边。
二、图的存储结构
一个图的信息包括两部分,即图中顶点的信息以及描述顶点之间的关系 ---- 边或者弧的信息。因此无论采用什么方法建立图的存储结构,都要完整、准确地反映这两个面的信息。下面介绍两种常用的图的存储结构。这篇介绍两个常见的结构:邻接矩阵和邻接表。
2.1 邻接矩阵
因为节点与节点之间的关系就是联通与否,即为 0 或者 1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。
可以看出无向图是对称的,而有向图没有对称关系。
如果边是带权值的且两个顶点不相连,我们可以用INT_MAX
或者INT_MIN
来表示。
邻接矩阵存储图的优点是能够快速知道图中两个顶点是否连通,缺点是顶点很多且边比较少时,比较浪费空间,并且两个节点之间的路径不好求。若要确定图中有多少条边,需要遍历一遍邻接矩阵,空间复杂度为 O(N^2) 。这是用邻接矩阵来存储图的局限性。
所以邻接矩阵适合存稠密图,适合查找两个顶点是否相连
2.2 邻接表
邻接表:使用数组表示顶点的集合,使用链表表示边的关系。
用数组保存顶点,用链表保存连通的顶点。
邻接表适合存稀疏图,适合查找一个顶点连出去的边
2.3 邻接矩阵的实现
邻接矩阵有以下的模板参数:
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
V - 顶点,W - 权值,MAX - 最大值(默认参数给整形的最大值),DIR - 表示图是否有方向。
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
class Graph
{
public:
private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<vector<W>> _matrix;// 邻接矩阵
};
构造函数
我们传进一个数组和一个size_t
型数据,数组里面存放顶点,数据表示数组的大小。
在内部我们首先要把每个顶点存储起来,并初始化邻接矩阵,把权值全部初始化成MAX代表不相连。
Graph(const V* a, size_t n)
{_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_matrix.resize(n);for (size_t i = 0; i < n; i++){_matrix[i].resize(n, MAX);}
}
添加边
首先要获取两个顶点的下标,然后还要判断是有向图还是无向图,无向图要添加两次。
// 获取顶点下标
size_t GetIdx(const V& v)
{auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;
}void addEdge(const V& src, const V& dst, const W& w)
{size_t si = GetIdx(src);size_t di = GetIdx(dst);_matrix[si][di] = w;if (DIR == false){_matrix[di][si] = w;}
}
打印观察
void Print()
{// 打印矩阵横坐标cout << " ";for (size_t i = 0; i < _vertexs.size(); ++i){printf("%5d", i);}cout << endl;// 打印矩阵for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " "; // 打印矩阵纵坐标for (size_t j = 0; j < _matrix[i].size(); ++j){if (_matrix[i][j] == MAX)printf("%5c", '*');elseprintf("%5d", _matrix[i][j]);}cout << endl;}
}
整体代码
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
class Graph
{
public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_matrix.resize(n);for (size_t i = 0; i < n; i++){_matrix[i].resize(n, MAX);}}// 获取顶点下标size_t GetIdx(const V& v){auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;}void addEdge(const V& src, const V& dst, const W& w){size_t si = GetIdx(src);size_t di = GetIdx(dst);_matrix[si][di] = w;if (DIR == false){_matrix[di][si] = w;}}void Print(){// 打印顶点和下标间的映射关系for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;// 打印矩阵横坐标cout << " ";for (size_t i = 0; i < _vertexs.size(); ++i){printf("%5d", i);}cout << endl;// 打印矩阵for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " "; // 打印矩阵纵坐标for (size_t j = 0; j < _matrix[i].size(); ++j){if (_matrix[i][j] == MAX)printf("%5c", '*');elseprintf("%5d", _matrix[i][j]);}cout << endl;}}private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<vector<W>> _matrix;// 邻接矩阵
};void TestGraph()
{Graph<char, int, INT_MAX, false> g("ABCDE", 5);g.addEdge('A', 'B', 1);g.addEdge('B', 'D', 4);g.addEdge('A', 'D', 2);g.addEdge('B', 'C', 9);g.addEdge('A', 'C', 8);g.addEdge('E', 'A', 5);g.addEdge('A', 'E', 3);g.addEdge('C', 'D', 6);g.Print();
}
2.4 邻接表的实现
邻接表里面存的是边,所以我们要设计一个边的类。
template <class W>
struct Edge
{Edge(int dsti, const W& w): _dsti(dsti), _w(w), _next(nullptr){}int _dsti;W _w;// 权值Edge<W>* _next;
};
当要加入一个边的时候,直接头插即可。
其他的和邻接矩阵同理。
template <class W>
struct Edge
{Edge(int dsti, const W& w): _dsti(dsti), _w(w), _next(nullptr){}int _dsti;W _w;// 权值Edge<W>* _next;
};template <class V, class W, bool DIR = false>
class Graph
{
public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_tables.resize(n, nullptr);}// 获取顶点下标size_t GetIdx(const V& v){auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;}void addEdge(const V& src, const V& dst, const W& w){size_t si = GetIdx(src);size_t di = GetIdx(dst);Edge<W>* eg = new Edge<W>(di, w);eg->_next = _tables[si];_tables[si] = eg;if (DIR == false){Edge<W>* eg = new Edge<W>(si, w);eg->_next = _tables[di];_tables[di] = eg;}}void Print(){// 打印顶点和下标间的映射关系for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;for (size_t i = 0; i < _tables.size(); ++i){// 遍历当前链表,并打印链表结点中的相关信息cout << _vertexs[i] << "[" << i << "]->";Edge<W>* cur = _tables[i];while (cur){cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";cur = cur->_next;}cout << "nullptr" << endl;}}private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<Edge<W>*> _tables;// 邻接表
};void TestGraph()
{Graph<char, int, true> g("ABCDE", 5);g.addEdge('A', 'B', 1);g.addEdge('B', 'D', 4);g.addEdge('A', 'D', 2);g.addEdge('B', 'C', 9);g.addEdge('A', 'C', 8);g.addEdge('E', 'A', 5);g.addEdge('A', 'E', 3);g.addEdge('C', 'D', 6);g.Print();
}
三、总结
根据邻接表和邻接矩阵的结构特性可知,当图为稀疏图、顶点较多,即图结构比较大时,更适宜选择邻接表作为存储结构。当图为稠密图、顶点较少时,或者不需要记录图中边的权值时,使用邻接矩阵作为存储结构较为合适。
邻接表和邻接矩阵相辅相成,各有优缺点,是互补的。
相关文章:

【数据结构与算法】图——邻接表与邻接矩阵
文章目录 一、图的基本概念二、图的存储结构2.1 邻接矩阵2.2 邻接表2.3 邻接矩阵的实现2.4 邻接表的实现 三、总结 一、图的基本概念 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E&#…...
网安笔记02 密码学基础
密码学概述 • 1.1、密码学的基本概念 密码编码学 : 密码编制 密码分析学 : 密码破译 密码学 : 研究密码保护 通信手段的科学, 密码编码学密码分析学 密码技术: 把可理解的消息伪装为不可理解的消息,再复原成原消息的科学 概…...

open3d io操作
目录 1. read_image, write_image 2. read_point_cloud, write_point_cloud 3. 深度相机IO操作 4. Mesh文件读取 1. read_image, write_image 读取jpg. png. bmp等文件 image_io.py import open3d as o3dif __name__ "__main__":img_data o3d.data.JuneauIma…...

【Linux】Linux安装Redis(图文解说详细版)
文章目录 前言第一步,下载安装包第二步,上传安装包到/opt下(老规矩了,安装包在opt下)第三步,解压安装包第四步,编译第五步,安装第六步,配置redis第七步,设置开…...

setTimeout不准时,CSS精准实现计时器功能
实际开发过程中,我们会经常遇到,首次进入页面进行相应提示,然后指定时间后自动消失或者前端时钟展示等需求。 按照传统方案,我们可以使用 setTimeout 实现。但其存在:实际延时比设定值更久的情况。 setTimeout 不准时…...

单细胞跨模态分析综述
单细胞技术的最新进展使跨模态和组织位置的细胞高通量分子分析成为可能。单细胞转录组数据现在可以通过染色质可及性、表面蛋白表达、适应性免疫受体库分析和空间信息进行补充。跨模态单细胞数据的可用性越来越高,推动出新的计算方法,以帮助科学家获得生…...

【零基础学机器学习 1】什么是机器学习?
机器学习的社会应用 1. 金融风控 机器学习在金融风控方面的应用非常广泛,可以用于预测借款人的信用风险、欺诈行为等。通过收集大量的历史数据,构建机器学习模型,可以对借款人的信用风险进行预测,从而帮助金融机构降低风险。 2…...
ARM处理器与中断——嵌入式(驱动)软开基础(一)
1 CPU的内部结构? CPU的内部结构大致可以分为: (1)控制单元(指令寄存器、指令译码器、操作控制器)。 (2)运算单元(算术逻辑单元)。 (3)存储单元(专用寄存器和通用寄存器) (4)时钟。 2 CPU跟内存、虚拟内存、硬盘的关系? (1)CPU要调用的程序和数据来自…...

WX小程序 - 2
条件渲染: wx:if "{{ newlist.length 0 }}" wx:else 跳路由:绑定点击事件,执行跳转页面 bindtap data-id"{{ item.id }}" 添加id wx.navigateTo 跳路由并传参, 下一个路由 onLoad生命周期可以获得参数…...

开源之夏2023 | 欢迎申请openEuler Embedded SIG开发任务
关于开源之夏 开源之夏是开源软件供应链点亮计划下的暑期活动,由中科院软件研究所与openEuler社区联合主办,旨在鼓励在校学生积极参与开源软件的开发维护,促进优秀开源软件社区的蓬勃发展。 活动联合各大开源社区,针对重要开源软件…...

【异常解决】vim编辑文件时提示 Found a swap file by the name “.start.sh.swp“的解决方案
vim编辑文件时提示 Found a swap file by the name ".start.sh.swp"的解决方案 一、问题描述二、原因说明三、解决方案3.1 方案1 删除即可3.2 方案2 禁止生成swp文件 一、问题描述 vim编辑文件时提示 Found a swap file by the name “.start.sh.swp”,如…...

「企业应用架构」应用架构概述
在信息系统中,应用架构或应用架构是构成企业架构(EA)支柱的几个架构域之一 应用架构描述了业务中使用的应用程序的行为,重点是它们如何相互之间以及如何与用户交互。它关注的是应用程序消费和生成的数据,而不是它们的内…...

ePWM模块(3)
比较模块 CMPA:比较寄存器A,其值与TBCTR值比较,相同时,事件发送到动作模块。 CMPB:比较寄存器B,其值与TBCTR值比较,相同时,事件发送到动作模块。 CMPCTL:控制寄存器(重要) SHDWAFULL(或SHDWBFULL):CMPA(或B)阴影寄存器满标志位 0:未满 1:满了 SHDWAMODE(或…...

【笔试强训选择题】Day11.习题(错题)解析
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!! 文章目录…...

JVM知识
垃圾收集器就是内存回收的具体实现 Serial Serial收集器是最基本的,发展历史最悠久的收集器。在JDK1.3之前是虚拟机新生代收集的唯一选择。是一种单线程收集器,只会使用一个CPU或者一条收集线程去完成垃圾收集工作,在进行垃圾收集的时候需要…...

操作系统第二章——进程与线程(中)
和光同尘,与时舒卷 文章目录 2.2.1 调度的概念,层次知识总览调度的基本概念高级调度低级调度中级调度三层调度的联系,对比进程的挂起态和七状态模型知识回顾 2.2.2 进程调度的时机,切换与过程,方式知识总览进程调度的时…...

AlphaFold的极限:高中生揭示人工智能在生物信息学挑战中的缺陷
人工智能程序AlphaFold (AlphaFold2开源了,不是土豪也不会编程的你怎么蹭一波?),通过预测蛋白质结构解决了结构生物信息学的核心问题。部分AlphaFold迷们声称“该程序已经掌握了终极蛋白质物理学,其工作能力已超越了最初的设计”。…...

RocketMQ双主双从环境搭建
环境要求 64位操作系统,推荐 Linux/Unix/macOS 64位 JDK 1.8 服务器准备 准备4台服务器两台master两台slave,如果服务器紧凑,则至少需要两台服务器相互master-slave IP HOSTS 172.*******.120 rocketmq-nameserver1 rocketmq-master1 …...

next.js博客搭建_初始化next项目(第一步)
文章目录 ⭐前言⭐next初始化TypeScript 开发项目安装react的ui框架(tDesign)设计布局 ⭐结束 ⭐前言 大家好,我是yma16,本期给大家分享next项目搭建博客的开始。 背景 因为我的博客网站https://yongma16.xyz是基于vue2搭建的&am…...

ACM - 其他算法 - 基础(前缀和 + 差分)
ACM- 其他算法 一、前缀和模板例题1、区间余数求K倍区间个数:AcWing 1230. K倍区间例题2、前缀和哈希求最长个数平分子串:Leetcode 面试题 17.05 字母与数字 二、差分1、一维差分2、二维差分 一、前缀和 模板 //一维前缀和 S[i] a[1] a[2] ... a[i] a[l] ... …...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...

路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)
起因 为了实现在报销流程中,发票不能重用的限制,发票上传后,希望能读出发票号,并记录发票号已用,下次不再可用于报销。 基于上面的需求,研究了OCR 的方式和读PDF的方式,实际是可行的ÿ…...
使用python进行图像处理—图像滤波(5)
图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值,以达到平滑(去噪)、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算,…...