【数据结构与算法】图——邻接表与邻接矩阵
文章目录
- 一、图的基本概念
- 二、图的存储结构
- 2.1 邻接矩阵
- 2.2 邻接表
- 2.3 邻接矩阵的实现
- 2.4 邻接表的实现
- 三、总结
一、图的基本概念
- 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是顶点的集合,E是边的集合。
- 在图中数据元素,我们则称之为顶点(Vertex)。
- 图中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以是空的。
有上面的定义可以得出树是一个特殊的图,与图的区别是没有环连通。
树关注的是节点(顶点)的值,而图关注的是顶点及边的权值。
- 图按照有无方向分为无向图和有向图。无向图由顶点和边构成,有向图由顶点和弧构成。弧有弧尾和弧头之分。
比方说现在想表示社交关系,那么QQ,微信等就是无向图,抖音微博这种就是有向图(你关注的人不一定关注了你)。
- 图按照边或弧的多少分稀疏图和稠密图。如果任意两个顶点之间都存在边叫完全图,有向的叫有向完全图。若无重复的边或顶点到自身的边则叫简单图。
- 图中顶点之间有邻接点、依附的概念。无向图顶点的边数叫做度,有向图顶点分为入度和出度。
- 图上的边或弧上带权则称为网。
- 一个图包含了另一个图的部分顶点和部分边,就叫做子图。
- 图中顶点间存在路径,两顶点存在路径则说明是连通的,如果路径最终回到起始点则称为环(回路),当中不重复叫简单路径。若无向图任意两顶点都是连通的,则图就是连通图,有向则称强连通图。
- 生成树: 在无向图中,一个连通图的最小连通子图称作该图的生成树。有 n 个顶点的连通图的生成树有 n 个顶点和 n-1 条边。
二、图的存储结构
一个图的信息包括两部分,即图中顶点的信息以及描述顶点之间的关系 ---- 边或者弧的信息。因此无论采用什么方法建立图的存储结构,都要完整、准确地反映这两个面的信息。下面介绍两种常用的图的存储结构。这篇介绍两个常见的结构:邻接矩阵和邻接表。
2.1 邻接矩阵
因为节点与节点之间的关系就是联通与否,即为 0 或者 1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。
可以看出无向图是对称的,而有向图没有对称关系。
如果边是带权值的且两个顶点不相连,我们可以用INT_MAX
或者INT_MIN
来表示。
邻接矩阵存储图的优点是能够快速知道图中两个顶点是否连通,缺点是顶点很多且边比较少时,比较浪费空间,并且两个节点之间的路径不好求。若要确定图中有多少条边,需要遍历一遍邻接矩阵,空间复杂度为 O(N^2) 。这是用邻接矩阵来存储图的局限性。
所以邻接矩阵适合存稠密图,适合查找两个顶点是否相连
2.2 邻接表
邻接表:使用数组表示顶点的集合,使用链表表示边的关系。
用数组保存顶点,用链表保存连通的顶点。
邻接表适合存稀疏图,适合查找一个顶点连出去的边
2.3 邻接矩阵的实现
邻接矩阵有以下的模板参数:
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
V - 顶点,W - 权值,MAX - 最大值(默认参数给整形的最大值),DIR - 表示图是否有方向。
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
class Graph
{
public:
private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<vector<W>> _matrix;// 邻接矩阵
};
构造函数
我们传进一个数组和一个size_t
型数据,数组里面存放顶点,数据表示数组的大小。
在内部我们首先要把每个顶点存储起来,并初始化邻接矩阵,把权值全部初始化成MAX代表不相连。
Graph(const V* a, size_t n)
{_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_matrix.resize(n);for (size_t i = 0; i < n; i++){_matrix[i].resize(n, MAX);}
}
添加边
首先要获取两个顶点的下标,然后还要判断是有向图还是无向图,无向图要添加两次。
// 获取顶点下标
size_t GetIdx(const V& v)
{auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;
}void addEdge(const V& src, const V& dst, const W& w)
{size_t si = GetIdx(src);size_t di = GetIdx(dst);_matrix[si][di] = w;if (DIR == false){_matrix[di][si] = w;}
}
打印观察
void Print()
{// 打印矩阵横坐标cout << " ";for (size_t i = 0; i < _vertexs.size(); ++i){printf("%5d", i);}cout << endl;// 打印矩阵for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " "; // 打印矩阵纵坐标for (size_t j = 0; j < _matrix[i].size(); ++j){if (_matrix[i][j] == MAX)printf("%5c", '*');elseprintf("%5d", _matrix[i][j]);}cout << endl;}
}
整体代码
template <class V, class W, W MAX = INT_MAX, bool DIR = false>
class Graph
{
public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_matrix.resize(n);for (size_t i = 0; i < n; i++){_matrix[i].resize(n, MAX);}}// 获取顶点下标size_t GetIdx(const V& v){auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;}void addEdge(const V& src, const V& dst, const W& w){size_t si = GetIdx(src);size_t di = GetIdx(dst);_matrix[si][di] = w;if (DIR == false){_matrix[di][si] = w;}}void Print(){// 打印顶点和下标间的映射关系for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;// 打印矩阵横坐标cout << " ";for (size_t i = 0; i < _vertexs.size(); ++i){printf("%5d", i);}cout << endl;// 打印矩阵for (size_t i = 0; i < _matrix.size(); ++i){cout << i << " "; // 打印矩阵纵坐标for (size_t j = 0; j < _matrix[i].size(); ++j){if (_matrix[i][j] == MAX)printf("%5c", '*');elseprintf("%5d", _matrix[i][j]);}cout << endl;}}private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<vector<W>> _matrix;// 邻接矩阵
};void TestGraph()
{Graph<char, int, INT_MAX, false> g("ABCDE", 5);g.addEdge('A', 'B', 1);g.addEdge('B', 'D', 4);g.addEdge('A', 'D', 2);g.addEdge('B', 'C', 9);g.addEdge('A', 'C', 8);g.addEdge('E', 'A', 5);g.addEdge('A', 'E', 3);g.addEdge('C', 'D', 6);g.Print();
}
2.4 邻接表的实现
邻接表里面存的是边,所以我们要设计一个边的类。
template <class W>
struct Edge
{Edge(int dsti, const W& w): _dsti(dsti), _w(w), _next(nullptr){}int _dsti;W _w;// 权值Edge<W>* _next;
};
当要加入一个边的时候,直接头插即可。
其他的和邻接矩阵同理。
template <class W>
struct Edge
{Edge(int dsti, const W& w): _dsti(dsti), _w(w), _next(nullptr){}int _dsti;W _w;// 权值Edge<W>* _next;
};template <class V, class W, bool DIR = false>
class Graph
{
public:Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);// 将传入数组的值存储到vector中_idxMap[a[i]] = i;// 让数组中的每一个数据映射一个下标}_tables.resize(n, nullptr);}// 获取顶点下标size_t GetIdx(const V& v){auto it = _idxMap.find(v);if (it == _idxMap.end()){assert(false);return -1;}return it->second;}void addEdge(const V& src, const V& dst, const W& w){size_t si = GetIdx(src);size_t di = GetIdx(dst);Edge<W>* eg = new Edge<W>(di, w);eg->_next = _tables[si];_tables[si] = eg;if (DIR == false){Edge<W>* eg = new Edge<W>(si, w);eg->_next = _tables[di];_tables[di] = eg;}}void Print(){// 打印顶点和下标间的映射关系for (size_t i = 0; i < _vertexs.size(); ++i){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;for (size_t i = 0; i < _tables.size(); ++i){// 遍历当前链表,并打印链表结点中的相关信息cout << _vertexs[i] << "[" << i << "]->";Edge<W>* cur = _tables[i];while (cur){cout << "[" << _vertexs[cur->_dsti] << ":" << cur->_dsti << ":" << cur->_w << "]->";cur = cur->_next;}cout << "nullptr" << endl;}}private:vector<V> _vertexs;// 顶点集合unordered_map<V, int> _idxMap;// 顶点映射下标vector<Edge<W>*> _tables;// 邻接表
};void TestGraph()
{Graph<char, int, true> g("ABCDE", 5);g.addEdge('A', 'B', 1);g.addEdge('B', 'D', 4);g.addEdge('A', 'D', 2);g.addEdge('B', 'C', 9);g.addEdge('A', 'C', 8);g.addEdge('E', 'A', 5);g.addEdge('A', 'E', 3);g.addEdge('C', 'D', 6);g.Print();
}
三、总结
根据邻接表和邻接矩阵的结构特性可知,当图为稀疏图、顶点较多,即图结构比较大时,更适宜选择邻接表作为存储结构。当图为稠密图、顶点较少时,或者不需要记录图中边的权值时,使用邻接矩阵作为存储结构较为合适。
邻接表和邻接矩阵相辅相成,各有优缺点,是互补的。
相关文章:

【数据结构与算法】图——邻接表与邻接矩阵
文章目录 一、图的基本概念二、图的存储结构2.1 邻接矩阵2.2 邻接表2.3 邻接矩阵的实现2.4 邻接表的实现 三、总结 一、图的基本概念 图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E&#…...
网安笔记02 密码学基础
密码学概述 • 1.1、密码学的基本概念 密码编码学 : 密码编制 密码分析学 : 密码破译 密码学 : 研究密码保护 通信手段的科学, 密码编码学密码分析学 密码技术: 把可理解的消息伪装为不可理解的消息,再复原成原消息的科学 概…...

open3d io操作
目录 1. read_image, write_image 2. read_point_cloud, write_point_cloud 3. 深度相机IO操作 4. Mesh文件读取 1. read_image, write_image 读取jpg. png. bmp等文件 image_io.py import open3d as o3dif __name__ "__main__":img_data o3d.data.JuneauIma…...

【Linux】Linux安装Redis(图文解说详细版)
文章目录 前言第一步,下载安装包第二步,上传安装包到/opt下(老规矩了,安装包在opt下)第三步,解压安装包第四步,编译第五步,安装第六步,配置redis第七步,设置开…...

setTimeout不准时,CSS精准实现计时器功能
实际开发过程中,我们会经常遇到,首次进入页面进行相应提示,然后指定时间后自动消失或者前端时钟展示等需求。 按照传统方案,我们可以使用 setTimeout 实现。但其存在:实际延时比设定值更久的情况。 setTimeout 不准时…...

单细胞跨模态分析综述
单细胞技术的最新进展使跨模态和组织位置的细胞高通量分子分析成为可能。单细胞转录组数据现在可以通过染色质可及性、表面蛋白表达、适应性免疫受体库分析和空间信息进行补充。跨模态单细胞数据的可用性越来越高,推动出新的计算方法,以帮助科学家获得生…...

【零基础学机器学习 1】什么是机器学习?
机器学习的社会应用 1. 金融风控 机器学习在金融风控方面的应用非常广泛,可以用于预测借款人的信用风险、欺诈行为等。通过收集大量的历史数据,构建机器学习模型,可以对借款人的信用风险进行预测,从而帮助金融机构降低风险。 2…...
ARM处理器与中断——嵌入式(驱动)软开基础(一)
1 CPU的内部结构? CPU的内部结构大致可以分为: (1)控制单元(指令寄存器、指令译码器、操作控制器)。 (2)运算单元(算术逻辑单元)。 (3)存储单元(专用寄存器和通用寄存器) (4)时钟。 2 CPU跟内存、虚拟内存、硬盘的关系? (1)CPU要调用的程序和数据来自…...

WX小程序 - 2
条件渲染: wx:if "{{ newlist.length 0 }}" wx:else 跳路由:绑定点击事件,执行跳转页面 bindtap data-id"{{ item.id }}" 添加id wx.navigateTo 跳路由并传参, 下一个路由 onLoad生命周期可以获得参数…...

开源之夏2023 | 欢迎申请openEuler Embedded SIG开发任务
关于开源之夏 开源之夏是开源软件供应链点亮计划下的暑期活动,由中科院软件研究所与openEuler社区联合主办,旨在鼓励在校学生积极参与开源软件的开发维护,促进优秀开源软件社区的蓬勃发展。 活动联合各大开源社区,针对重要开源软件…...

【异常解决】vim编辑文件时提示 Found a swap file by the name “.start.sh.swp“的解决方案
vim编辑文件时提示 Found a swap file by the name ".start.sh.swp"的解决方案 一、问题描述二、原因说明三、解决方案3.1 方案1 删除即可3.2 方案2 禁止生成swp文件 一、问题描述 vim编辑文件时提示 Found a swap file by the name “.start.sh.swp”,如…...

「企业应用架构」应用架构概述
在信息系统中,应用架构或应用架构是构成企业架构(EA)支柱的几个架构域之一 应用架构描述了业务中使用的应用程序的行为,重点是它们如何相互之间以及如何与用户交互。它关注的是应用程序消费和生成的数据,而不是它们的内…...

ePWM模块(3)
比较模块 CMPA:比较寄存器A,其值与TBCTR值比较,相同时,事件发送到动作模块。 CMPB:比较寄存器B,其值与TBCTR值比较,相同时,事件发送到动作模块。 CMPCTL:控制寄存器(重要) SHDWAFULL(或SHDWBFULL):CMPA(或B)阴影寄存器满标志位 0:未满 1:满了 SHDWAMODE(或…...

【笔试强训选择题】Day11.习题(错题)解析
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!! 文章目录…...

JVM知识
垃圾收集器就是内存回收的具体实现 Serial Serial收集器是最基本的,发展历史最悠久的收集器。在JDK1.3之前是虚拟机新生代收集的唯一选择。是一种单线程收集器,只会使用一个CPU或者一条收集线程去完成垃圾收集工作,在进行垃圾收集的时候需要…...

操作系统第二章——进程与线程(中)
和光同尘,与时舒卷 文章目录 2.2.1 调度的概念,层次知识总览调度的基本概念高级调度低级调度中级调度三层调度的联系,对比进程的挂起态和七状态模型知识回顾 2.2.2 进程调度的时机,切换与过程,方式知识总览进程调度的时…...

AlphaFold的极限:高中生揭示人工智能在生物信息学挑战中的缺陷
人工智能程序AlphaFold (AlphaFold2开源了,不是土豪也不会编程的你怎么蹭一波?),通过预测蛋白质结构解决了结构生物信息学的核心问题。部分AlphaFold迷们声称“该程序已经掌握了终极蛋白质物理学,其工作能力已超越了最初的设计”。…...

RocketMQ双主双从环境搭建
环境要求 64位操作系统,推荐 Linux/Unix/macOS 64位 JDK 1.8 服务器准备 准备4台服务器两台master两台slave,如果服务器紧凑,则至少需要两台服务器相互master-slave IP HOSTS 172.*******.120 rocketmq-nameserver1 rocketmq-master1 …...

next.js博客搭建_初始化next项目(第一步)
文章目录 ⭐前言⭐next初始化TypeScript 开发项目安装react的ui框架(tDesign)设计布局 ⭐结束 ⭐前言 大家好,我是yma16,本期给大家分享next项目搭建博客的开始。 背景 因为我的博客网站https://yongma16.xyz是基于vue2搭建的&am…...

ACM - 其他算法 - 基础(前缀和 + 差分)
ACM- 其他算法 一、前缀和模板例题1、区间余数求K倍区间个数:AcWing 1230. K倍区间例题2、前缀和哈希求最长个数平分子串:Leetcode 面试题 17.05 字母与数字 二、差分1、一维差分2、二维差分 一、前缀和 模板 //一维前缀和 S[i] a[1] a[2] ... a[i] a[l] ... …...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...