当前位置: 首页 > news >正文

绝地求生 压枪python版

仅做学习交流,非盈利,侵联删(狗头保命)

一、概述

1.1 效果

总的来说,这种方式是通过图像识别来完成的,不侵入游戏,不读取内存,安全不被检测。

1.2 前置知识

  1. 游戏中有各种不同的枪械,不同的枪械后坐力不一样,射速也不同。相同的枪械,装上不同的配件后,后坐力也会发生变化。
  2. 枪械的y轴上移是固定的,x轴是随机的,因此我们程序只移动鼠标y轴。x轴游戏中手动操作。

1.3 实现原理简述

  1. 通过python中的pynput模块监听键盘鼠标。

监听鼠标左键按下,这个时候开始移动鼠标。左键抬起,终止移动。
监听键盘按键,比如tab键,这时打开背包,截屏开始识别装备栏。

  1. 通过python的pyautogui模块来截屏,可以截取屏幕指定位置。

  2. 通过python的opencv模块来处理截取的图片。

  3. 通过SSIM算法来对比图片相似度,获取到装备栏的武器、配件。

  4. 通过python的pydirectinput操作鼠标移动。

二、详解

2.1 pynput监听键盘

import pynput.keyboard as keyboard# 监听键盘
def listen_keybord():listener = keyboard.Listener(on_press=onPressed, on_release=onRelease)listener.start()

pynput的监听为异步事件,但是会被阻塞,所以如果事件处理事件过长,得用异步处理。

2.2 监听事件

创建了c_equipment类来封装武器信息。
重点在tab键的监听,使用异步来检测装备信息。

def onRelease(key):try:if '1' == key.char:c_equipment.switch = 1 #主武器1elif '2' == key.char:c_equipment.switch = 2 #主武器2elif '3' == key.char:c_equipment.switch = 3 #手枪 switch=3的时候不压枪elif '4' == key.char:c_equipment.switch = 3 #刀具elif '5' == key.char:c_equipment.switch = 3 #手雷except AttributeError:if 'tab' == key.name:      #tab键异步操作检测asyncHandle()elif 'num_lock' == key.name:  #小键盘锁用来控制程序开关changeOpen()elif 'shift' == key.name:   c_contants.hold = False

2.3 pyautogui截屏

检测装备,首先要在打开装备栏的时候,截屏。

pyautogui.screenshot(region=[x, y, w, h])

x,y分别表示坐标,w,h表示宽度和高度。
截取之后,为了方便对比图片,需要将图片二值化,然后保存到本地。

完整代码如下:

import pyautoguidef adaptive_binarization(img):#自适应二值化maxval = 255blockSize = 3C = 5img2 = cv2.adaptiveThreshold(img, maxval, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize, C)return img2# 屏幕截图
def shotCut(x, y, w, h):im = pyautogui.screenshot(region=[x, y, w, h])screen = cv2.cvtColor(numpy.asarray(im), cv2.COLOR_BGR2GRAY)temp = adaptive_binarization(screen)return tempdef saveScreen():screen1 = shotCut(1780, 125, 614, 570)cv2.imwrite("./resource/shotcut/screen.bmp", screen1)

image.png

2.4 素材准备

屏幕截图处理后如上,在装备识别之前,我们需要先准备很多素材图片用来对比。
比如:武器名、枪托、握把、枪口

image.png

武器名:

m762.bmp

枪托

m4.bmp

2.5 裁剪图片

为了方便图片对比,我们需要将截取的装备栏部分的图片裁剪成和素材一样大小的图片。

比如,我们要检测武器一的名字:

#读取之前的截屏
screen = cv2.imread("./resource/shotcut/screen.bmp", 0)
#裁剪出武器1名字
screenWepon1 = screen[0:40, 45:125]
#拿裁剪的图片和武器素材的目录作为入参,进行对比
w1Name = compareAndGetName(screenWepon1, "./resource/guns/")

2.6 对比图片

#对比图片获取名字
def compareAndGetName(screenImg, dir):#获取目录下所有文件content = os.listdir(dir)name = 'none'max = 0#遍历文件for fileName in content:#使用opencv读取文件curWepone = cv2.imread(dir + fileName, 0)#使用SSIM算法拿到图片相似度res = calculate_ssim(numpy.asarray(screenImg), numpy.asarray(curWepone))#获取相似度最大的if max < res and res > 0.5:max = resname = str(fileName)[:-4]return name

SSIM算法:

def calculate_ssim(img1, img2):if not img1.shape == img2.shape:raise ValueError('Input images must have the same dimensions.')if img1.ndim == 2:return ssim(img1, img2)elif img1.ndim == 3:if img1.shape[2] == 3:ssims = []for i in range(3):ssims.append(ssim(img1, img2))return numpy.array(ssims).mean()elif img1.shape[2] == 1:return ssim(numpy.squeeze(img1), numpy.squeeze(img2))else:raise ValueError('Wrong input image dimensions.')

到这,我们就能获取到装备栏1位置的武器名字了。

2.7 操作鼠标

知道武器名字后,同理,我们可以获取到装备的配件。
然后,监听鼠标左键按下,然后开始下移鼠标。

我们以m762武器为例:

射速:86, 每一发子弹间隔86毫秒

后坐力:
[42, 36, 36, 36, 42, 43, 42, 43, 54, 55, 54, 55, 54, 55, 54, 55, 62, 62, 62, 62, 62, 62, 62, 62,62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 77, 78, 77, 78]

表示每发子弹打出后,需要在y轴下移的距离,用来与后坐力对冲。

def moveMouse(): #从识别的数据中,再更具当前选择的武器,获取此刻的武器(比如按下1键,武器装备栏1为m762,那么此时武器就是m762)curWepone = getCurrentWepone()if (curWepone.name == 'none'):return#基础y轴补偿(没任何配件)basic = curWepone.basic#射速speed = curWepone.speedstartTime = round(time.perf_counter(), 3) * 1000for i in range(curWepone.maxBullets):#是否可以开火,比如左键抬起,就中断。if not canFire():break#系数,比如按住shift屏息,就需要再原来基础上乘1.33holdK = 1.0if c_contants.hold:holdK = curWepone.hold#乘以系数后实际的移动距离moveSum = int(round(basic[i] * curWepone.k * holdK, 2))while True:if (moveSum > 10):#移动鼠标pydirectinput.move(xOffset=0, yOffset=10, relative=True)moveSum -= 10elif (moveSum > 0):pydirectinput.move(xOffset=0, yOffset=moveSum, relative=True)moveSum = 0elapsed = (round(time.perf_counter(), 3) * 1000 - startTime)if not canFire() or elapsed > (i + 1) * speed + 10:breaktime.sleep(0.01)

代码中的while循环:

其实再第一发子弹射出后,我们只需要下移42的距离,然后计算出需要等待的时间(0.086-移动鼠标的时间),然后第二发子弹射出,以此类推。

while循环的作用是防止屏幕抖动太厉害。因为直接移动42的距离,游戏中抖的厉害,所以我们再86毫秒的间隔里分了多次来移动鼠标。

python中的sleep函数不准确,所以我们要自己来计时,防止错过每发子弹的时间间隔。
不准确还有个好处,随机,正好不用自己来随机防止检测了。

三、最麻烦的部分

每个枪的后坐力都不一样,我们需要自己去游戏的训练场,一发发子弹的调试,获取准确的补偿数据。

四、最后

代码上传到gitee,感兴趣的一起交流。
https://gitee.com/lookoutthebush/PUBG

相关文章:

绝地求生 压枪python版

仅做学习交流&#xff0c;非盈利&#xff0c;侵联删&#xff08;狗头保命) 一、概述 1.1 效果 总的来说&#xff0c;这种方式是通过图像识别来完成的&#xff0c;不侵入游戏&#xff0c;不读取内存&#xff0c;安全不被检测。 1.2 前置知识 游戏中有各种不同的枪械&#x…...

麒麟操作V10SP1系统systemd目标单元

通过命令列出当前系统中所有可用的 systemd 目标单元。 用于被控制系统启动时运行哪些服务和进程&#xff0c;以及系统在运行过程中的行为。 rootkylin:~# systemctl list-units --typetargetUNIT LOAD ACTIVE SUB DESCRIPTION basic.target…...

python基于LBP+SVM开发构建基于fer2013数据集的人脸表情识别模型是种什么体验,让结果告诉你...

本身LBPSVM是比较经典的技术路线用来做图像识别、目标检测&#xff0c;没有什么特殊的地方 fer2013数据集在我之前的博文中也有详细的实践过&#xff0c;如下&#xff1a; 《fer2013人脸表情数据实践》 系统地基于CNN开发实现 《Python实现将人脸表情数据集fer2013转化为图像…...

antd——实现不分页的表格前端排序功能——基础积累

最近在写后台管理系统时&#xff0c;遇到一个需求&#xff0c;就是给表格中的某些字段添加排序功能。注意该表格是不分页的&#xff0c;因此排序可以只通过前端处理。 如下图所示&#xff1a; 在antd官网上是有关于表格排序的功能的。 对某一列数据进行排序&#xff0c;通过…...

案例11:Java超市管理系统设计与实现开题报告

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…...

@JsonAlias 和 @JsonProperty的使用

JsonAlias 和 JsonProperty 前言一、JsonAlias二、JsonProperty总结 前言 使用场景&#xff1a;主要运用于参数映射。 如&#xff1a;将admin_id 的值赋予adminId 常用于&#xff1a;接收第三方参数&#xff0c;并对参数进行驼峰化或别名。 一、JsonAlias 是在反序列化的时候…...

Grafana系列-统一展示-8-ElasticSearch日志快速搜索仪表板

系列文章 Grafana 系列文章 概述 我们是基于这篇文章: Grafana 系列文章&#xff08;十二&#xff09;&#xff1a;如何使用 Loki 创建一个用于搜索日志的 Grafana 仪表板, 创建一个类似的, 但是基于 ElasticSearch 的日志快速搜索仪表板. 最终完整效果如下: &#x1f4dd;…...

【K8s】openEuler23操作系统安装Docker和Kubernetes

openEuler23操作系统安装 服务器搭建环境随手记 文章目录 openEuler23操作系统安装前言&#xff1a;一、前期准备&#xff08;所有节点&#xff09;1.1所有节点&#xff0c;关闭防火墙规则&#xff0c;关闭selinux&#xff0c;关闭swap交换&#xff0c;打通所有服务器网络&am…...

异常数据检测 | Python实现ADTK时间序列异常数据检测

文章目录 文章概述模型描述程序设计参考资料文章概述 异常数据检测 | Python实现ADTK时间序列异常数据检测 智能运维AIOps的数据基本上都是时间序列形式的,而异常检测告警是AIOps中重要组成部分。 模型描述 笔者最近在处理时间序列数据时有使用到adtk这个python库,在这里和大…...

软件测试之jmeter性能测试让你打开一个全新的世界

一、Jmeter简介 1 概述 jmeter是一个软件&#xff0c;使负载测试或业绩为导向的业务&#xff08;功能&#xff09;测试不同的协议或技术。 它是 Apache 软件基金会的Stefano Mazzocchi JMeter 最初开发的。 它主要对 Apache JServ&#xff08;现在称为如 Apache Tomcat…...

Redis数据结构——动态字符串、Dict、ZipList

一、Redis数据结构-动态字符串 我们都知道Redis中保存的Key是字符串&#xff0c;value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。 不过Redis没有直接使用C语言中的字符串&#xff0c;因为C语言字符串存在很多问题&#xff1a; 获取字符串长度…...

ipad可以用别的品牌的手写笔吗?便宜的ipad电容笔

而对于那些把ipad当做学习工具的人而言&#xff0c;苹果Pencil就成了必备品。但因为苹果Pencil太贵了&#xff0c;学生们买不起。因此&#xff0c;最好的选择还是平替电容笔。作为一个ipad的忠实用户&#xff0c;同时也是一个数字热爱着&#xff0c;这两年来&#xff0c;我一直…...

【数据库】关于SQL SERVER的排序规则的问题分析

在安装报表系统&#xff0c;运行sql语句时候提示“无法解决 equal to 操作的排序规则冲突。”&#xff0c;费了半天时间才搞定&#xff0c;原来是因为sql语句中没有加全collate Chinese_PRC_CI_AI_WS &#xff01; 用排序规则特点计算汉字笔划和取得拼音首字母 SQL SERVER的…...

算法修炼之练气篇——练气十三层

博主&#xff1a;命运之光 专栏&#xff1a;算法修炼之练气篇 目录 题目 1023: [编程入门]选择排序 题目描述 输入格式 输出格式 样例输入 样例输出 题目 1065: 二级C语言-最小绝对值 题目描述 输入格式 输出格式 样例输入 样例输出 题目 1021: [编程入门]迭代法求…...

ChatGPT:AI不取代程序员,只取代的不掌握AI的程序员

作者&#xff1a;成都兰亭集势信息技术有限公司技术总监张雄 可能大家会有如下的问题&#xff0c;我就使用chatGPT这个AI工具的API来问一下。 问&#xff1a;chatGPT会替换掉程序员吗&#xff1f;如果能&#xff0c;预计好久&#xff1f; 答&#xff1a;作为一名 AI 语言模型&a…...

数字革命下的产品:百数十年变迁的启示与思考。

随着数字化时代的到来&#xff0c;软件开发成为各行各业不可或缺的一部分。然而&#xff0c;传统的软件开发方法需要长时间的开发周期&#xff0c;高昂的成本和大量的人力资源。因此&#xff0c;低代码开发平台应运而生。低代码开发平台通过简化开发人员的工作和加速软件开发流…...

部门新来一00后,给我卷崩溃了...

2022年已经结束结束了&#xff0c;最近内卷严重&#xff0c;各种跳槽裁员&#xff0c;相信很多小伙伴也在准备今年的金三银四的面试计划。 在此展示一套学习笔记 / 面试手册&#xff0c;年后跳槽的朋友可以好好刷一刷&#xff0c;还是挺有必要的&#xff0c;它几乎涵盖了所有的…...

使用Spring Boot和Docker构建可伸缩的微服务架构,应对增长的业务需求

使用Spring Boot和Docker构建可伸缩的微服务架构&#xff0c;应对增长的业务需求 一、简介1. 微服务架构的定义2. Spring Boot和Docker的概述 二、Spring Boot1. Spring Boot的介绍2. Spring Boot的优势3. Spring Boot的组件4. Spring Boot的应用 三、Docker1. Docker的介绍2. …...

计算机组成原理基础练习题第四章

1.下述说法中()是正确的。 A、半导体RAM信息可读可写,且断电后仍能保持记忆 B、半导体RAM是易失性RAM,而静态RAM中的存储信息是不易失的 C、半导体RAM是易失性RAM,而静态RAM只有在电源不掉电时,所存信息是不易失的 D、以上选项都不对 解析&#xf…...

浅谈Gradle构建工具

一、序言 常见的项目构建工具有Ant、Maven、Gradle&#xff0c;以往项目常见采用Maven进构建&#xff0c;但随着技术的发展&#xff0c;越来越多的项目采用Gradle进行构建&#xff0c;例如 Spring-boot。Gradle站在了Ant和Maven构建工具的肩膀上&#xff0c;使用强大的表达式语…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...