#机器学习--重新看待线性回归
#机器学习--重新看待线性回归
- 引言
- 普通视角的线性回归
- 最大似然角度的线性回归
- 总结
引言
本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。
普通视角的线性回归
对于一组数据 { ( x 0 , y 0 ) , … ( x m , y m ) } \{(x_{0},y_{0}),\dots(x_{m},y_{m})\} {(x0,y0),…(xm,ym)} 我们希望找到一个线性模型 y = w T x y=w^{T}x y=wTx 使得其在这组数据上拟合效果最好。既然要找最好,肯定就需要一个衡量指标。
最直观的理解就是,当所有点到直线的距离之和最小时,误差最小,拟合效果最好。即,使用 M S E t r a i n MSE_{train} MSEtrain 作为模型的衡量指标。此时我们得到优化目标: arg min w ∑ i m ( y i − w T x i ) 2 \argmin_{w}\sum_{i}^{m}(y_{i}-w^{T}x_{i})^{2} wargmini∑m(yi−wTxi)2
最大似然角度的线性回归
假设对于每个 y i y_{i} yi 都由正态分布 N ( w T x i , σ ) N(w^{T}x_{i},\sigma) N(wTxi,σ) 产生,其中 σ \sigma σ 是用户固定的某个常量。之所以这么假设,是因为如果要找到一个正态分布 N ( μ , σ ) N(\mu,\sigma) N(μ,σ) 能够使得点 ( x , y ) (x,y) (x,y) 被采样的概率最大,那么这个正态分布就是 N ( x , σ ) N(x,\sigma) N(x,σ) 。也就是说,对于每个样本都是由正态分布采样所得,根据最大似然的思想,令所有的 y i y_{i} yi 同时发生的可能性最大,即: arg max w ∑ i m l n [ 1 σ 2 π e − 1 2 ( y i − w T x i σ ) 2 ] \argmax_{w}\sum_{i}^{m}ln[\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{y_{i}-w^{T}x_{i}}{\sigma})^{2}}] wargmaxi∑mln[σ2π1e−21(σyi−wTxi)2] = > arg max w [ ∑ i m l n [ 1 σ 2 π ] − ∑ i m [ 1 2 σ 2 ( y i − w T x i ) 2 ] ] =>\argmax_{w}[\sum_{i}^{m}ln[\frac{1}{\sigma\sqrt{2\pi}}]-\sum_{i}^{m}[\frac{1}{2\sigma^{2}}(y_{i}-w^{T}x_{i})^{2}]] =>wargmax[i∑mln[σ2π1]−i∑m[2σ21(yi−wTxi)2]] = > arg min w ∑ i m ( y i − w T x i ) 2 =>\argmin_{w}\sum_{i}^{m}(y_{i}-w^{T}x_{i})^{2} =>wargmini∑m(yi−wTxi)2
总结
从最终结果来看,两者之间的优化目标是一样的,但从本质上来讲,最小二乘法只是最大似然在正态分布下的一种特殊情况。如果假设其它分布则会有不同的结果,如:
伯努利分布下,最大似然估计的结果就是逻辑回归。
多项式分布下,最大似然估计的结果就是softmax回归。
感兴趣的读者可以自行证明。
相关文章:
#机器学习--重新看待线性回归
#机器学习--重新看待线性回归 引言普通视角的线性回归最大似然角度的线性回归总结 引言 本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。 普通视角的线性回归 对于一组数据 { ( x 0 , y 0 ) , … ( x m…...
亚马逊,shopee,lazada卖家如何组建自己的测评团队
测评补单,这个话题在如今不管国内还是国外的电商行业已经是众所周知,它能够快速帮助自己的产品添加评论,获取排名,打造爆款,可以让用户更加真实、清晰、快捷的了解产品,以及产品的使用,快速上手…...
flink cdc 用mybatis-plus写到mysql5.6
背景 项目中需要做一个数据同步的功能, 在方案对比中,canal 与flink cdc 都有尝试。 起初在网上找的flink例子,要么只能支持mysql5.7以上版本,要么就是需要序列化各种bug,比如就不能直接使用 @Autowired xxxServer 来调用数据库层面的注入,getBaseMapper()为空 因为目…...
【C++】模板的一点简单介绍
模板 前言泛型编程函数模板概念格式函数模板的原理函数模板的实例化 类模板类模板的定义格式类模板的实例化 前言 这篇博客讲的是模板的一些基本知识,并没有那么深入,但是如果你是为了过期末考试而搜的这篇博客,我觉得下面讲的是够了的。 之…...
SpringCloud概述
前言 什么是微服务? 微服务是一种面向服务的架构(SOA)风格,其中,应用程序被构建为多个不同的小型服务的集合而不是单个应用程序。与单个程序不同的是,微服务让你可以同时运行多个独立的应用程序,而这些独立的应用…...
Metal入门学习:GPU并行计算大数组相加
一、编程指南PDF下载链接(中英文档) 1、Metal编程指南PDF链接 https://github.com/dennie-lee/ios_tech_record/raw/main/Metal学习PDF/Metal 编程指南.pdf 2、Metal着色语言(Metal Shader Language:简称MSL)编程指南PDF链接 https://github.com/dennie-lee/ios_te…...
关于在spyder,jupyter notebook下创建虚拟环境(pytorch,tensorflow)均有效
anaconda下载地址 https://www.anaconda.com/download/ 下载完成后打开anaconda目录下的 anaconda prompt 在命令行中输入下面的命令创建一个叫tf2.0的虚拟环境(“tf2.0”是建立的Conda虚拟环境的名字,可以自拟) conda create -n tf2.0 p…...
oracle 闪回恢复
oracle 闪回恢复 闪回恢复区主要通过3个初始化参数来设置和管理: db_recovery_file_dest:指定闪回恢复区的位置 db_recovery_file_dest_size:指定闪回恢复区的可用空间大小 db_flashback_retention_target:指定数据库可以回退的时…...
LeetCode 322 零钱兑换
题目: 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。你可以认为每种硬币的数量…...
面试篇SpringMVC是什么以及工作原理
1,什么是SpringMVC呢? 它是Spring的一种设计模式,一款框架。 2,MVC分别代表什么? M代表模型即model的缩写,指业务逻辑层模型。V代表视图即View的缩写,指视图层。C则是controller的缩写ÿ…...
jQuery-层级选择器
<!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"> <title>层级选择器</title> <style type"text/css"> …...
【Java数据结构】——第十节(下).选择排序与堆排序
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:Java初阶数据结构 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!! 文章目…...
45道SQL题目陆续更新
文章目录 学习视频配置环境第一天内连接 外连接第二天第三天 学习视频 学习视频 配置环境 四张表 配置四张表的sql语句 #创建发据库 create database frogdata charsetutf8;use frogdata;# 学生表 Student create table Student( SId varchar(10), Sname var…...
在线PS软件有哪些不错的推荐
许多新的UI设计合作伙伴非常关心在线ps工具的选择。现在市场上有各种各样的ps网页替代工具,数量众多,令人眼花缭乱。本文简要介绍了10个在线PS工具,我相信一定有一个适合你! 1.即时设计 即时设计是一款在线 UI 设计工具…...
Java实现天气预报功能
如果要实现类似百度天气、手机App这样的天气预报功能该如何实现?首先想到的是百度... 背景: 最近公司做了一个项目,天气预报的功能也做上去了,不仅有实时天气、未来7天预报的功能、还有气象预警的功能。 天气包括基本天气、白天夜…...
python循环语句
while循环 Python中,while循环只要在条件(表达式)为真的情况下,就会一直重复执行相应的循环代码块。 while语句的语法格式如下: while 条件表达式:代码块while语句执行的具体流程为:首先判断…...
多线程基础(一)线程基础信息、synchronized 锁概念
1. 基本概念: 程序: 程序是一些保存在磁盘上的指令的有序集合,是静态的。程序包括:内存资源、IO资源、信号处理等。(如:XX.exe) 进程: 进程是程序执行的过程,包括了动态…...
JAVA期末考内容知识点的梳理
作者的话 前言:这些都是很基本的,还有很多没有写出来,重点在于考试复习,包括后四章的内容 前面内容请参考JAVA阶段考内容知识点的梳理 一、集合、流 课堂总结1集合 集合概念: 保存和盛装数据的容器,将许多…...
为什么要使用Thrift与Protocol Buffers?
编码数据的格式 程序通常(至少)使用两种形式的数据: 在内存中,数据保存在对象、结构体、列表、数组、散列表、树等中。 这些数据结构针对 CPU 的高效访问和操作进行了优化(通常使用指针)。如果要将数据写…...
oa是什么意思?oa系统哪个好用?
一、oa是什么意思 oa(Office Automation办公自动化)是一种将智能化科技应用于企业管理中的应用系统。它可以通过电脑网络、互联网等技术手段,将企业的各种业务流程、各种业务数据进行集成和处理,将各种业务流程和各种业务数据统一…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
