当前位置: 首页 > news >正文

在FederatedScope 如何查看clientserver之间的传递的参数大小(通讯量)? 对源码的探索记录

在FederatedScope 如何查看client/server之间的传递的参数大小(通讯量)? 对源码的探索记录

背景需求

想给自己的论文补一个通讯开销对比实验:需要计算出client和server之间传递的信息(例如,模型权重、embedding)总共加起来有多大。

通过在用户交流群的咨询,得知目前FS的monitor模块能够统计server/client之间的通信量(total_upload_bytes/total_download_bytes),同时可以在federatedscope/core/monitors/monitor.py下查看日志文件。

(PS: FS框架的开发老师在交流群中有问必答,总是耐心回答每个问题,感恩~)

按照开发老师的提示,我找到了训练完成后的log文件,文件的内容如下:

图1:system_metrics.log 示意图
图1:system_metrics.log 示意图

可以看到,这个log文件记录了每个client/server,下载/上传的字节数总和(例如上图红框所示)。

但是一开始,我并不清楚倒数第二行中“sys_avg/total_upload_bytes”和”sys_avg/total_download_bytes“这两个均值是如何计算出来的。同时也很好奇,FS到底是如何计算每个client的总上传/下载字节数。抱着这样的疑问和想法,我决定去学习一下FS相关的源码。

目标

SO,这次探索主要想弄清楚两件事

问题一:FS如何计算total_upload_bytes和total_download_bytes?
问题二:sys_avg/total_upload_bytes”和“sys_avg/total_download_bytes” 这两个值是怎么算出来的?

将初步结论放前面

对于问题1

在每一个联邦通讯论中,每次处理Message时,根据Message的content (即传递的消息的内容),来计算total_upload_bytes 和total_download_bytes,并将两个值存到Client类和Server类的成员变量中。

对于问题2

实际上,sys_avg/total_upload_bytes是每个client 和server 的total_upload_bytes 的平均值:

比如图1中:sys_avg/total_upload_bytes=56.78K=(114072+39504+39504+39504)/4/1024

在这里插入图片描述

对于问题一的探索

Note1:接下来的部分比较无聊,并且需要了解FederatedScope的运行机制(尤其是Message消息传递和事件驱动机制),推荐查看官方教程:

Note2:本博文仅考虑standalone模式的情况。

如何计算total_download_bytes?

track_download_bytes函数

计算该值的核心是**track_download_bytes()**函数:简单来说,该函数在处理每一个message时,计算该message的download_bytes并将其累加到client/server对象的成员变量中。

调用位置:fed_runner.py 的_handle_msg函数

在这里插入图片描述

track_download_bytes()函数的实现就是直接把传进来的参数加到 woker(client or server)类对象的total_download_bytes变量中

在这里插入图片描述

msg.count_bytes()函数

传给track_download_bytes()的参数 download_bytes这个变量,又基于msg.count_bytes()这个方法。
在这里插入图片描述

该方法的实现如下
在这里插入图片描述

可以看到,方法里使用了pympler.asizeof 这个函数,它的作用是计算Python对象消耗的内存大小(返回值的单位是Bytes

用法示例:

pympler.asizeof can be used to investigate how much memory certain Python objects consume. In contrast to sys.getsizeof, asizeof sizes objects recursively. You can use one of the asizeof functions to get the size of these objects and all associated referents:

例子:

>>> from pympler import asizeof
>>> obj = [1, 2, (3, 4), 'text']
>>> asizeof.asizeof(obj)
176

如何计算 download_bytes ?

跟踪download_bytes 的位置

StandaloneCommManager类的send函数

定位:federatedscope/core/communication.py

在这里插入图片描述

什么时候会调用send?

woker类中,发送Message时,通常会使用的就是self.comm_manager.send。

举例:

在这里插入图片描述

在这里插入图片描述

upload_bytes如何计算?

当前轮Message的upload_bytes大小=Messge中的接收方的数量*这个Message的content的大小

在这里插入图片描述

对于问题二:两个统计量的均值是怎么算出来的

由于代码逻辑比较复杂,截图略麻烦,所以这里主要用文字表述。

简而言之,每一个通讯轮的评估阶段,框架会将每个参与者(client和server)的系统统计量,存到日志文件(system_metrics.log)里。存储时,当前轮的统计量会覆盖上一轮的统计量。

举个例子,假设有3个client和1个server,那么整个联邦过程结束后,system_metrics.log文件里只有4行(即图1中去掉最后两行)。

而之后,框架会调用名为 merge_system_metrics_simulation_mode()的方法。该方法读取system_metrics.log这个文件,根据文件里的数据取平均值。

在这里插入图片描述
函数定位:federatedscope/core/monitors/monitor.py

相关文章:

在FederatedScope 如何查看clientserver之间的传递的参数大小(通讯量)? 对源码的探索记录

在FederatedScope 如何查看client/server之间的传递的参数大小(通讯量)? 对源码的探索记录 背景需求 想给自己的论文补一个通讯开销对比实验:需要计算出client和server之间传递的信息(例如,模型权重、embedding)总共…...

2023爱分析 · 数据科学与机器学习平台厂商全景报告 | 爱分析报告

报告编委 黄勇 爱分析合伙人&首席分析师 孟晨静 爱分析分析师 目录 1. 研究范围定义 2. 厂商全景地图 3. 市场分析与厂商评估 4. 入选厂商列表 1. 研究范围定义 研究范围 经济新常态下,如何对海量数据进行分析挖掘以支撑敏捷决策、适应市场的快…...

20230215_数据库过程_高质量发展

高质量发展 —一、运营结果 SQL_STRING:‘delete shzc.np_rec_lnpdb a where exists (select * from tbcs.v_np_rec_lnpdbbcv t where a.telnumt.telnum and a.outcarriert.OUTCARRIER and a.incarriert.INCARRIER and a.owncarriert.OWNCARRIER and a.starttimet.STARTTIME …...

【百度 JavaScript API v3.0】LocalSearch 位置检索、Autocomplete 结果提示

地名检索移动到指定坐标 需求 在输入框中搜索,在下拉列表中浮动,右侧出现高亮的列表集。选中之后移动到指定坐标。 技术点 官网地址: JavaScript API - 快速入门 | 百度地图API SDK 开发文档:百度地图JSAPI 3.0类参考 实现 …...

运用Facebook投放,如何制定有效的竞价策略?

广告投放中,我们经常会遇到一个问题,就是不知道什么样的广告适合自己的业务。其实,最简单的方法就是根据我们业务本身进行定位并进行投放。当你了解了广告主所处行业及目标受众后,接下来会针对目标市场进行搜索和定位(…...

大数据框架之Hadoop:HDFS(五)NameNode和SecondaryNameNode(面试开发重点)

5.1NN和2NN工作机制 5.1.1思考:NameNode中的元数据是存储在哪里的? 首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此&am…...

计算机网络 - 1. 体系结构

目录概念、功能、组成、分类概念功能组成分类分层结构概念总结OSI 七层模型应用层表示层会话层传输层网络层数据链路层物理层TCP/IP 四层模型OSI 与 TCP/IP 相同点OSI 与 TCP/IP 不同点为什么 TCP/IP 去除了表示层和会话层五层参考模型概念、功能、组成、分类 概念 &#x1f…...

银行业上云进行时,OLAP 云服务如何解决传统数仓之痛?

本文节选自《中国金融科技发展概览:创新与应用前沿》,从某国有大行构建大数据云平台的实践出发,解读了 OLAP 云服务如何助力银行实现技术平台化、组件化和云服务化,降低技术应用门槛,赋能业务创新。此外,本…...

特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】

特定领域知识图谱融合方案:文本匹配算法之预训练模型SimBert、ERNIE-Gram 文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语…...

【2023最新教程】从0到1开发自动化测试框架(0基础也能看懂)

一、序言 随着项目版本的快速迭代、APP测试有以下几个特点: 首先,功能点多且细,测试工作量大,容易遗漏;其次,代码模块常改动,回归测试很频繁,测试重复低效;最后&#x…...

linux备份命令小记 —— 筑梦之路

Linux dump命令用于备份文件系统。 dump为备份工具程序,可将目录或整个文件系统备份至指定的设备,或备份成一个大文件。 dump命令只可以备份ext2/3/4格式的文件系统, centos7默认未安装dump命令,可以使用yum install -y dump安…...

vue项目(vue-cli)配置环境变量和打包时区分开发、测试、生产环境

1.打包时区分不同环境在自定义配置Vue-cli 的过程中,想分别通过.env.development .env.test .env.production 来代表开发、测试、生产环境。NODE_ENVdevelopment NODE_ENVtest NODE_ENVproduction本来想使用上面三种配置来区分三个环境,但是发现使用test…...

Python 命名规范

Python 命名规范 基本规范 类型公有内部备注Packagepackage_namenone全小写下划线式驼峰Modulemodule_name_module_name全小写下划线式驼峰ClassClassName_ClassName首字母大写式驼峰Methodmethod_nameprotected: _method_name private: __method_name全小写下划线式驼峰Exce…...

操作系统——2.操作系统的特征

这篇文章,我们来讲一讲操作系统的特征 目录 1.概述 2.并发 2.1并发概念 2.1.1操作系统的并发性 3.共享 3.1共享的概念 3.2共享的方式 4.并发和共享的关系 5.虚拟 5.1虚拟的概念 5.2虚拟小结 6.异步 6.1异步概念 7.小结 1.概述 上一篇文章,我们…...

【计算机网络期末复习】第六章 应用层

✍个人博客:https://blog.csdn.net/Newin2020?spm1011.2415.3001.5343 📣专栏定位:为想复习学校计算机网络课程的同学提供重点大纲,帮助大家渡过期末考~ 📚专栏地址:https://blog.csdn.net/Newin2020/arti…...

TypeScript基本教程

TS是JS的超集,所以JS基础的类型都包含在内 起步安装 npm install typescript -g运行tsc 文件名 基础类型 Boolean、Number、String、null、undefined 以及 ES6 的 Symbol 和 ES10 的 BigInt。 1 字符串类型 字符串是使用string定义的 let a: string 123 //普…...

使用Windows API实现本地音频采集

Windows API提供了Winmm(Windows多媒体)库,其中包括了音频设备相关的函数,可以用来实现音频设备的枚举和测试。 下面是一个简单的示例代码,演示了如何使用Winmm库中的waveInGetNumDevs()函数来枚举计算机上的音频输入…...

实用的费曼学习法 | 一些思考

文章目录 一、前言二、费曼学习法CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 大数据与人工智能背景下,最重要的是:捕捉机会和快速学习的能力 一、前言 费曼学习法是美国著名的物理学家,理查德 ∙ \bullet ∙ 费曼总结出来的学习方法。 这个方法的核心是:当你学习了…...

Linux安装Docker配置docker-compose 编排工具【超详细】

一、介绍Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有…...

iTerm2 + Oh My Zsh 打造舒适终端体验

最终效果图: 因为powerline以及homebrew均需要安装command line tool,网络条件优越的同学在执行本文下面内容之前,可以先安装XCode并打开运行一次(会初始化安装components),省去以后在iterm2中的等待时间。…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...