(转载)基于多层编码遗传算法的车间调度算法(matlab实现)
以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。
1 理论基础
2 案例背景
2.1 问题描述
2.2 模型建立

2.3 算法实现
3 MATLAB程序实现
3.1 主函数
%% 清空环境
clc;clear%% 下载数据
load scheduleData Jm T JmNumber
%工序 时间%% 基本参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
GGAP=0.9; %代沟
XOVR=0.8; %交叉率
MUTR=0.6; %变异率
gen=0; %代计数器
%PNumber 工件个数 MNumber 工序个数
[PNumber MNumber]=size(Jm);
trace=zeros(2, MAXGEN); %寻优结果的初始值
WNumber=PNumber*MNumber; %工序总个数%% 初始化
Number=zeros(1,PNumber); % PNumber 工件个数
for i=1:PNumberNumber(i)=MNumber; %MNumber工序个数
end% 代码2层,第一层工序,第二层机器
Chrom=zeros(NIND,2*WNumber);
for j=1:NINDWPNumberTemp=Number;for i=1:WNumber%随机产成工序val=unidrnd(PNumber);while WPNumberTemp(val)==0val=unidrnd(PNumber);end%第一层代码表示工序Chrom(j,i)= val;WPNumberTemp(val)=WPNumberTemp(val)-1;%第2层代码表示机器Temp=Jm{val,MNumber-WPNumberTemp(val)};SizeTemp=length(Temp);%随机产成工序机器Chrom(j,i+WNumber)= unidrnd(SizeTemp);end
end%计算目标函数值
[PVal ObjV P S]=cal(Chrom,JmNumber,T,Jm); %% 循环寻找
while gen<MAXGEN%分配适应度值FitnV=ranking(ObjV); %选择操作SelCh=select('rws', Chrom, FitnV, GGAP); %交叉操作SelCh=across(SelCh,XOVR,Jm,T); %变异操作SelCh=aberranceJm(SelCh,MUTR,Jm,T); %计算目标适应度值[PVal ObjVSel P S]=cal(SelCh,JmNumber,T,Jm); %重新插入新种群[Chrom ObjV] =reins(Chrom, SelCh,1, 1, ObjV, ObjVSel); %代计数器增加gen=gen+1; %保存最优值trace(1, gen)=min(ObjV); trace(2, gen)=mean(ObjV); % 记录最佳值if gen==1Val1=PVal;Val2=P;MinVal=min(ObjV);%最小时间STemp=S;end%记录 最小的工序if MinVal> trace(1,gen)Val1=PVal;Val2=P;MinVal=trace(1,gen);STemp=S;endend% 当前最佳值
PVal=Val1; %工序时间
P=Val2; %工序
S=STemp; %调度基因含机器基因%% 描绘解的变化
figure(1)
plot(trace(1,:));
hold on;
plot(trace(2,:),'-.');grid;
legend('解的变化','种群均值的变化');%% 显示最优解
figure(2);
MP=S(1,PNumber*MNumber+1:PNumber*MNumber*2);
for i=1:WNumber val= P(1,i);a=(mod(val,100)); %工序b=((val-a)/100); %工件Temp=Jm{b,a};mText=Temp(MP(1,i));x1=PVal(1,i);x2=PVal(2,i);y1=mText-1;y2=mText;PlotRec(x1,x2,mText);PlotRec(PVal(1,i),PVal(2,i),mText);hold on;fill([x1,x2,x2,x1],[y1,y1,y2,y2],[1-1/b,1/b,b/PNumber]);text((x1+x2)/2,mText-0.25,num2str(P(i)));
end 3.2 仿真结果
4 素例扩展
4.1 模糊目标
相关文章:
(转载)基于多层编码遗传算法的车间调度算法(matlab实现)
以下内容大部分来源于《MATLAB智能算法30个案例分析》,仅为学习交流所用。 1 理论基础 遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体…...
Redis的常用数据结构之哈希类型
首先这里说的哈希类型针对的是redis中的value的k-v结构 常见的操作命令 hset设置值 hsetnx命令,不存在可以设置,存在设置不成功 hget取值,这里与字符串类型不同是要精确到filed。前面的判断也是基于field来实现的 要是field没有就返回null h…...
计算机组成原理-存储系统-缓存存储器(Cache)
目录 一、Cache基本概念 1.2性能分析 二、 Cache和主存的映射发生 2.1全相连映射编辑 2.2直接映射编辑 2.3组相连映射 三、Cachae的替换算法 3.1 随机算法(RADN) 3.2 先进先出算法(FIFO) 3.3 近期最少使用(LRU) 3.4 最近不经常使用(LFU) 四、写策略 4…...
打开c语言生成exe文件,出现闪退的解决方法
为什么打开c语言生成的exe文件,立马闪退。 起初个别问的时候,我只是简单的说明程序运行完了,就自动关了, 首先,生成的exe文件本质是控制台程序,这些都是依赖于windows的控制台窗口,程序执行完…...
算法基础学习笔记——⑩DFS与BFS\树与图
✨博主:命运之光 ✨专栏:算法基础学习 目录 DFS与BFS\树与图 ✨DFS ✨BFS 🍓宽搜流程图如下: 🍓宽搜流程: 🍓广搜模板 ✨树与图 🍓树是特殊的图(连通无环的图&am…...
chatgpt赋能python:Python中可迭代对象的介绍
Python中可迭代对象的介绍 Python是一种高级编程语言,它具有简单易学、可读性强、功能强大等特点,成为了数据科学、机器学习、Web开发等领域的热门选择。Python中有很多重要的概念和功能,其中之一就是支持可迭代对象的概念。 在Python中&am…...
报表控件FastReport使用指南——如何打开WebP格式的图片
FastReport 是功能齐全的报表控件,可以帮助开发者可以快速并高效地为.NET,VCL,COM,ActiveX应用程序添加报表支持,由于其独特的编程原则,现在已经成为了Delphi平台最优秀的报表控件,支持将编程开…...
【鲁棒、状态估计】用于电力系统动态状态估计的鲁棒迭代扩展卡尔曼滤波器研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
整理6个超好用的在线编辑器!
随着 Web 开发对图像可扩展性、响应性、交互性和可编程性的需求增加,SVG 图形成为最适合 Web 开发的图像格式之一。它因文件小、可压缩性强并且无论如何放大或缩小,图像都不会失真而受到欢迎。然而,为了编辑 SVG 图像,需要使用 SV…...
ArcGIS10.8下载及安装教程(附安装步骤)
谷歌云: https://drive.google.com/drive/folders/10igu7ZSMaR0v0WD7-2W-7ADJGMUFc2ze?uspsharing ArcGIS10.8 百度网盘: https://pan.baidu.com/s/1s5bL3QsCP5sgcftCPxc88w 提取码:kw4j 阿里云: https://www.aliyundriv…...
AI智能照片编辑:AI Photo for Mac
AI Photo是一款Mac平台上的智能照片编辑软件,它基于人工智能技术,可以帮助用户快速、轻松地对照片进行编辑和美化。AI Photo提供了多种智能修复和美化功能,包括自动调整色彩、对比度、亮度、清晰度等,使得照片的质量得到有效提升。…...
Tuxera for Mac2023中文版读写硬盘U盘工具
在日常生活中,我们使用Mac时经常会遇到外部设备不能正常使用的情况,如:U盘、硬盘、软盘等等一系列存储设备,而这些设备的格式大多为NTFS,Mac系统对NTFS格式分区存在一定的兼容性问题,不能正常读写。 那么什…...
项目遇到的实际需求: java从信任所有证书到对server证书进行校验
最近项目上开发了一个rest api,放在了一台linux服务器上,并且启用了https连接;在另一台服务器上写了一个功能需要去调用linux机器上的api。 项目里面自己封装了一个HttpsClient的类,用来发送https请求,并且在里面重写了…...
使用JS来实现轮播图的效果
最好今天分享一个使用JS制作的轮播图效果 个人名片: 😊作者简介:一名大一在校生,web前端开发专业 🤡 个人主页:几何小超 🐼座右铭:懒惰受到的惩罚不仅仅是自己的失败,…...
Springboot +spring security,自定义认证和授权异常处理器
一.简介 在Spring Security中异常分为两种: AuthenticationException 认证异常AccessDeniedException 权限异常 我们先给大家演示下如何自定义异常处理器,然后再结合源码帮助大家进行分析 二.创建项目 如何创建一个SpringSecurity项目,前…...
Dockerfile(1) - FROM 指令详解
FROM 指明当前的镜像基于哪个镜像构建dockerfile 必须以 FROM 开头,除了 ARG 命令可以在 FROM 前面 FROM [--platform<platform>] <image> [AS <name>]FROM [--platform<platform>] <image>[:<tag>] [AS <name>]FROM […...
【嵌入式Linux】源码菜单配置 | 编译 | 菜单配置的实现 | 源码编译的实现
源码配置编译 源码配置编译,要把中间各个环节都理清楚 厂商把自己增加的东西专门放了个文件独立,方便开发者发现变化 1.菜单配置 移植的第一步,就是选配,通过make menuconfig图形化界面选配 //载入配置 $ make ARCHarm64 tegra_defconfi…...
python自动化爬虫实战
python自动化爬虫实战 偶然的一次机会再次用到爬虫,借此机会记录一下爬虫的学习经历,方便后续复用。 需求:爬取网站数据并存入的csv文件中,总体分为两步 爬取网站数据存到到csv文件中 1、配置爬虫环境 1.1、下载自动化测试驱动 …...
LVGL-最新版本及其版本定义标准
lvgl的最新版本是9.0.0,处于开发分支中。 稳定版本是8.3.0. 建议一般开发使用稳定版8.3.0. .\lvgl.h定义了当前版本 /*************************** CURRENT VERSION OF LVGL ***************************/ #define LVGL_VERSION_MAJOR 8 #define LVGL_VERSION_MINO…...
ORB_SLAM2算法中如何计算右目和左目两个特征点的是否匹配?
文章目录 if(kpR.octave<levelL-1 || kpR.octave>levelL+1)const int &levelL = kpL.octave;if(uR>=minU && uR<=maxU)const cv::Mat &dR = mDescriptorsRight.row(iR);const int dist = ORBmatcher::DescriptorDistance(dL,dR);筛选最佳匹配特征点…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
DAY 45 超大力王爱学Python
来自超大力王的友情提示:在用tensordoard的时候一定一定要用绝对位置,例如:tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾: tensorboard的发展历史和原理tens…...
